Cargando…
Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge
BACKGROUND AND PURPOSE: The ISLES challenge (Ischemic Stroke Lesion Segmentation) enables globally diverse teams to compete to develop advanced tools for stroke lesion analysis with machine learning. Detection of irreversibly damaged tissue on computed tomography perfusion (CTP) is often necessary t...
Autores principales: | Hakim, Arsany, Christensen, Søren, Winzeck, Stefan, Lansberg, Maarten G., Parsons, Mark W., Lucas, Christian, Robben, David, Wiest, Roland, Reyes, Mauricio, Zaharchuk, Greg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240494/ https://www.ncbi.nlm.nih.gov/pubmed/33957774 http://dx.doi.org/10.1161/STROKEAHA.120.030696 |
Ejemplares similares
-
ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
por: Winzeck, Stefan, et al.
Publicado: (2018) -
Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network
por: Nazari-Farsani, Sanaz, et al.
Publicado: (2022) -
Cerebral CT Perfusion in Acute Stroke: The Effect of Lowering the Tube Load and Sampling Rate on the Reproducibility of Parametric Maps
por: Ioannidis, Georgios S., et al.
Publicado: (2021) -
Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging
por: Yu, Yannan, et al.
Publicado: (2020) -
Pyogenic brain abscess with atypical features resembling glioblastoma in advanced MRI imaging
por: Hakim, Arsany, et al.
Publicado: (2017)