Cargando…

Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis

Sepsis-induced myocardial dysfunction (MD) is an important pathophysiological feature of multiorgan failure caused by a dysregulated host response to infection. Patients with MD continue to be managed in intensive care units with limited understanding of the molecular mechanisms controlling disease...

Descripción completa

Detalles Bibliográficos
Autores principales: Ektesabi, Amin M., Mori, Keisuke, Tsoporis, James N., Vaswani, Chirag M., Gupta, Sahil, Walsh, Chris, Varkouhi, Amir K., Mei, Shirley H.J., Stewart, Duncan J., Liles, W. Conrad, Marshall, John C., Hu, Pingzhao, Parker, Thomas G., dos Santos, Claudia C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240645/
https://www.ncbi.nlm.nih.gov/pubmed/33378320
http://dx.doi.org/10.1097/SHK.0000000000001701
_version_ 1783715252365426688
author Ektesabi, Amin M.
Mori, Keisuke
Tsoporis, James N.
Vaswani, Chirag M.
Gupta, Sahil
Walsh, Chris
Varkouhi, Amir K.
Mei, Shirley H.J.
Stewart, Duncan J.
Liles, W. Conrad
Marshall, John C.
Hu, Pingzhao
Parker, Thomas G.
dos Santos, Claudia C.
author_facet Ektesabi, Amin M.
Mori, Keisuke
Tsoporis, James N.
Vaswani, Chirag M.
Gupta, Sahil
Walsh, Chris
Varkouhi, Amir K.
Mei, Shirley H.J.
Stewart, Duncan J.
Liles, W. Conrad
Marshall, John C.
Hu, Pingzhao
Parker, Thomas G.
dos Santos, Claudia C.
author_sort Ektesabi, Amin M.
collection PubMed
description Sepsis-induced myocardial dysfunction (MD) is an important pathophysiological feature of multiorgan failure caused by a dysregulated host response to infection. Patients with MD continue to be managed in intensive care units with limited understanding of the molecular mechanisms controlling disease pathogenesis. Emerging evidences support the use of mesenchymal stem/stromal cell (MSC) therapy for treating critically ill septic patients. Combining this with the known role that microRNAs (miRNAs) play in reversing sepsis-induced myocardial-dysfunction, this study sought to investigate how MSC administration alters miRNA expression in the heart. Mice were randomized to experimental polymicrobial sepsis induced by cecal ligation and puncture (CLP) or sham surgery, treated with either MSCs (2.5 × 10(5)) or placebo (saline). Twenty-eight hours post-intervention, RNA was collected from whole hearts for transcriptomic and microRNA profiling. The top microRNAs differentially regulated in hearts by CLP and MSC administration were used to generate a putative mRNA-miRNA interaction network. Key genes, termed hub genes, within the network were then identified and further validated in vivo. Network analysis and RT-qPCR revealed that septic hearts treated with MSCs resulted in upregulation of five miRNAs, including miR-187, and decrease in three top hit putative hub genes (Itpkc, Lrrc59, and Tbl1xr1). Functionally, MSC administration decreased inflammatory and apoptotic pathways, while increasing cardiac-specific structural and functional, gene expression. Taken together, our data suggest that MSC administration regulates host-derived miRNAs production to protect cardiomyocytes from sepsis-induced MD.
format Online
Article
Text
id pubmed-8240645
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-82406452021-07-06 Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis Ektesabi, Amin M. Mori, Keisuke Tsoporis, James N. Vaswani, Chirag M. Gupta, Sahil Walsh, Chris Varkouhi, Amir K. Mei, Shirley H.J. Stewart, Duncan J. Liles, W. Conrad Marshall, John C. Hu, Pingzhao Parker, Thomas G. dos Santos, Claudia C. Shock Basic Science Aspects Sepsis-induced myocardial dysfunction (MD) is an important pathophysiological feature of multiorgan failure caused by a dysregulated host response to infection. Patients with MD continue to be managed in intensive care units with limited understanding of the molecular mechanisms controlling disease pathogenesis. Emerging evidences support the use of mesenchymal stem/stromal cell (MSC) therapy for treating critically ill septic patients. Combining this with the known role that microRNAs (miRNAs) play in reversing sepsis-induced myocardial-dysfunction, this study sought to investigate how MSC administration alters miRNA expression in the heart. Mice were randomized to experimental polymicrobial sepsis induced by cecal ligation and puncture (CLP) or sham surgery, treated with either MSCs (2.5 × 10(5)) or placebo (saline). Twenty-eight hours post-intervention, RNA was collected from whole hearts for transcriptomic and microRNA profiling. The top microRNAs differentially regulated in hearts by CLP and MSC administration were used to generate a putative mRNA-miRNA interaction network. Key genes, termed hub genes, within the network were then identified and further validated in vivo. Network analysis and RT-qPCR revealed that septic hearts treated with MSCs resulted in upregulation of five miRNAs, including miR-187, and decrease in three top hit putative hub genes (Itpkc, Lrrc59, and Tbl1xr1). Functionally, MSC administration decreased inflammatory and apoptotic pathways, while increasing cardiac-specific structural and functional, gene expression. Taken together, our data suggest that MSC administration regulates host-derived miRNAs production to protect cardiomyocytes from sepsis-induced MD. Lippincott Williams & Wilkins 2021-07 2020-12-29 /pmc/articles/PMC8240645/ /pubmed/33378320 http://dx.doi.org/10.1097/SHK.0000000000001701 Text en Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/)
spellingShingle Basic Science Aspects
Ektesabi, Amin M.
Mori, Keisuke
Tsoporis, James N.
Vaswani, Chirag M.
Gupta, Sahil
Walsh, Chris
Varkouhi, Amir K.
Mei, Shirley H.J.
Stewart, Duncan J.
Liles, W. Conrad
Marshall, John C.
Hu, Pingzhao
Parker, Thomas G.
dos Santos, Claudia C.
Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis
title Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis
title_full Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis
title_fullStr Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis
title_full_unstemmed Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis
title_short Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis
title_sort mesenchymal stem/stromal cells increase cardiac mir-187-3p expression in a polymicrobial animal model of sepsis
topic Basic Science Aspects
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240645/
https://www.ncbi.nlm.nih.gov/pubmed/33378320
http://dx.doi.org/10.1097/SHK.0000000000001701
work_keys_str_mv AT ektesabiaminm mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT morikeisuke mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT tsoporisjamesn mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT vaswanichiragm mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT guptasahil mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT walshchris mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT varkouhiamirk mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT meishirleyhj mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT stewartduncanj mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT lileswconrad mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT marshalljohnc mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT hupingzhao mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT parkerthomasg mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis
AT dossantosclaudiac mesenchymalstemstromalcellsincreasecardiacmir1873pexpressioninapolymicrobialanimalmodelofsepsis