Cargando…
Protein Secondary Structure Prediction With a Reductive Deep Learning Method
Protein secondary structures have been identified as the links in the physical processes of primary sequences, typically random coils, folding into functional tertiary structures that enable proteins to involve a variety of biological events in life science. Therefore, an efficient protein secondary...
Autores principales: | Lyu, Zhiliang, Wang, Zhijin, Luo, Fangfang, Shuai, Jianwei, Huang, Yandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240957/ https://www.ncbi.nlm.nih.gov/pubmed/34211967 http://dx.doi.org/10.3389/fbioe.2021.687426 |
Ejemplares similares
-
TMPSS: A Deep Learning-Based Predictor for Secondary Structure and Topology Structure Prediction of Alpha-Helical Transmembrane Proteins
por: Liu, Zhe, et al.
Publicado: (2021) -
Editorial: Feature Representation and Learning Methods With Applications in Protein Secondary Structure
por: Yan, Ni, et al.
Publicado: (2021) -
Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory
por: Yuan, Lu, et al.
Publicado: (2023) -
SDN2GO: An Integrated Deep Learning Model for Protein Function Prediction
por: Cai, Yideng, et al.
Publicado: (2020) -
Prediction of protein secondary structure based on an improved channel attention and multiscale convolution module
por: Jin, Xin, et al.
Publicado: (2022)