Cargando…
Personalized prediction of disease activity in patients with rheumatoid arthritis using an adaptive deep neural network
BACKGROUND: Deep neural networks learn from former experiences on a large scale and can be used to predict future disease activity as potential clinical decision support. AdaptiveNet is a novel adaptive recurrent neural network optimized to deal with heterogeneous and missing clinical data. OBJECTIV...
Autores principales: | Kalweit, Maria, Walker, Ulrich A., Finckh, Axel, Müller, Rüdiger, Kalweit, Gabriel, Scherer, Almut, Boedecker, Joschka, Hügle, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241074/ https://www.ncbi.nlm.nih.gov/pubmed/34185794 http://dx.doi.org/10.1371/journal.pone.0252289 |
Ejemplares similares
-
Patient groups in Rheumatoid arthritis identified by deep learning respond differently to biologic or targeted synthetic DMARDs
por: Kalweit, Maria, et al.
Publicado: (2023) -
Anaemia may add information to standardised disease activity assessment to predict radiographic damage in rheumatoid arthritis: a prospective cohort study
por: Möller, Burkhard, et al.
Publicado: (2014) -
Prediction of sustained biologic and targeted synthetic DMARD-free remission in rheumatoid arthritis patients
por: Burkard, Theresa, et al.
Publicado: (2021) -
Interruptions of biological and targeted synthetic disease-modifying antirheumatic drugs in rheumatoid arthritis: a descriptive cohort study assessing trends in patient characteristics in Switzerland
por: Burkard, Theresa, et al.
Publicado: (2022) -
Longitudinal associations between body mass index and changes in disease activity and radiographic progression in rheumatoid arthritis patients treated with infliximab
por: Burkard, Theresa, et al.
Publicado: (2023)