Cargando…
5'-UTR SNP of FGF13 causes translational defect and intellectual disability
The congenital intellectual disability (ID)-causing gene mutations remain largely unclear, although many genetic variations might relate to ID. We screened gene mutations in Chinese Han children suffering from severe ID and found a single-nucleotide polymorphism (SNP) in the 5′-untranslated region (...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241442/ https://www.ncbi.nlm.nih.gov/pubmed/34184986 http://dx.doi.org/10.7554/eLife.63021 |
Sumario: | The congenital intellectual disability (ID)-causing gene mutations remain largely unclear, although many genetic variations might relate to ID. We screened gene mutations in Chinese Han children suffering from severe ID and found a single-nucleotide polymorphism (SNP) in the 5′-untranslated region (5′-UTR) of fibroblast growth factor 13 (FGF13) mRNA (NM_001139500.1:c.-32c>G) shared by three male children. In both HEK293 cells and patient-derived induced pluripotent stem cells, this SNP reduced the translation of FGF13, which stabilizes microtubules in developing neurons. Mice carrying the homologous point mutation in 5′-UTR of Fgf13 showed delayed neuronal migration during cortical development, and weakened learning and memory. Furthermore, this SNP reduced the interaction between FGF13 5′-UTR and polypyrimidine-tract-binding protein 2 (PTBP2), which was required for FGF13 translation in cortical neurons. Thus, this 5′-UTR SNP of FGF13 interferes with the translational process of FGF13 and causes deficits in brain development and cognitive functions. |
---|