Cargando…
A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy
A band selection method based on two layers selection (TLS) strategy, which forms an optimal subset from all-bands set to reconstitute the original hyperspectral imagery (HSI) and aims to cost a fewer bands for better performances, is proposed in this paper. As its name implies, TLS picks out the ba...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241513/ https://www.ncbi.nlm.nih.gov/pubmed/34239549 http://dx.doi.org/10.1155/2021/5592323 |
_version_ | 1783715427074965504 |
---|---|
author | Chen, Nian Lu, Kezhong Zhou, Hao |
author_facet | Chen, Nian Lu, Kezhong Zhou, Hao |
author_sort | Chen, Nian |
collection | PubMed |
description | A band selection method based on two layers selection (TLS) strategy, which forms an optimal subset from all-bands set to reconstitute the original hyperspectral imagery (HSI) and aims to cost a fewer bands for better performances, is proposed in this paper. As its name implies, TLS picks out the bands with low correlation and a large amount of information into the target set to reach dimensionality reduction for HSI via two phases. Specifically, the fast density peaks clustering (FDPC) algorithm is used to select the most representative node in each cluster to build a candidate set at first. During the implementation, we normalize the local density and relative distance and utilize the dynamic cutoff distance to weaken the influence of density so that the selection is more likely to be carried out in scattered clusters than in high-density ones. After that, we conduct a further selection in the candidate set using mRMR strategy and comprehensive measurement of information (CMI), and the eventual winners will be selected into the target set. Compared with other six state-of-the-art unsupervised algorithms on three real-world HSI data sets, the results show that TLS can group the bands with lower correlation and richer information and has obvious advantages in indicators of overall accuracy (OA), average accuracy (AA), and Kappa coefficient. |
format | Online Article Text |
id | pubmed-8241513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-82415132021-07-07 A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy Chen, Nian Lu, Kezhong Zhou, Hao Comput Intell Neurosci Research Article A band selection method based on two layers selection (TLS) strategy, which forms an optimal subset from all-bands set to reconstitute the original hyperspectral imagery (HSI) and aims to cost a fewer bands for better performances, is proposed in this paper. As its name implies, TLS picks out the bands with low correlation and a large amount of information into the target set to reach dimensionality reduction for HSI via two phases. Specifically, the fast density peaks clustering (FDPC) algorithm is used to select the most representative node in each cluster to build a candidate set at first. During the implementation, we normalize the local density and relative distance and utilize the dynamic cutoff distance to weaken the influence of density so that the selection is more likely to be carried out in scattered clusters than in high-density ones. After that, we conduct a further selection in the candidate set using mRMR strategy and comprehensive measurement of information (CMI), and the eventual winners will be selected into the target set. Compared with other six state-of-the-art unsupervised algorithms on three real-world HSI data sets, the results show that TLS can group the bands with lower correlation and richer information and has obvious advantages in indicators of overall accuracy (OA), average accuracy (AA), and Kappa coefficient. Hindawi 2021-06-22 /pmc/articles/PMC8241513/ /pubmed/34239549 http://dx.doi.org/10.1155/2021/5592323 Text en Copyright © 2021 Nian Chen et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chen, Nian Lu, Kezhong Zhou, Hao A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy |
title | A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy |
title_full | A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy |
title_fullStr | A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy |
title_full_unstemmed | A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy |
title_short | A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy |
title_sort | search method for optimal band combination of hyperspectral imagery based on two layers selection strategy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241513/ https://www.ncbi.nlm.nih.gov/pubmed/34239549 http://dx.doi.org/10.1155/2021/5592323 |
work_keys_str_mv | AT chennian asearchmethodforoptimalbandcombinationofhyperspectralimagerybasedontwolayersselectionstrategy AT lukezhong asearchmethodforoptimalbandcombinationofhyperspectralimagerybasedontwolayersselectionstrategy AT zhouhao asearchmethodforoptimalbandcombinationofhyperspectralimagerybasedontwolayersselectionstrategy AT chennian searchmethodforoptimalbandcombinationofhyperspectralimagerybasedontwolayersselectionstrategy AT lukezhong searchmethodforoptimalbandcombinationofhyperspectralimagerybasedontwolayersselectionstrategy AT zhouhao searchmethodforoptimalbandcombinationofhyperspectralimagerybasedontwolayersselectionstrategy |