Cargando…
A stacked ensemble for the detection of COVID-19 with high recall and accuracy
The main challenges for the automatic detection of the coronavirus disease (COVID-19) from computed tomography (CT) scans of an individual are: a lack of large datasets, ambiguity in the characteristics of COVID-19 and the detection techniques having low sensitivity (or recall). Hence, developing di...
Autores principales: | Jangam, Ebenezer, Annavarapu, Chandra Sekhara Rao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241584/ https://www.ncbi.nlm.nih.gov/pubmed/34247135 http://dx.doi.org/10.1016/j.compbiomed.2021.104608 |
Ejemplares similares
-
Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking
por: Jangam, Ebenezer, et al.
Publicado: (2021) -
A multi-class classification framework for disease screening and disease diagnosis of COVID-19 from chest X-ray images
por: Jangam, Ebenezer, et al.
Publicado: (2022) -
Opinion analysis and aspect understanding during covid-19 pandemic using BERT-Bi-LSTM ensemble method
por: Wankhade, Mayur, et al.
Publicado: (2022) -
Deep learning-based improved snapshot ensemble technique for COVID-19 chest X-ray classification
por: P, Samson Anosh Babu, et al.
Publicado: (2021) -
Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm
por: Annavarapu, Chandra Sekhara Rao, et al.
Publicado: (2016)