Cargando…
Zebrafish behavior feature recognition using three-dimensional tracking and machine learning
In this work, we aim to construct a new behavior analysis method by using machine learning. We used two cameras to capture three-dimensional (3D) tracking data of zebrafish, which were analyzed using fuzzy adaptive resonance theory (FuzzyART), a type of machine learning algorithm, to identify specif...
Autores principales: | Yang, Peng, Takahashi, Hiro, Murase, Masataka, Itoh, Motoyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242018/ https://www.ncbi.nlm.nih.gov/pubmed/34188116 http://dx.doi.org/10.1038/s41598-021-92854-0 |
Ejemplares similares
-
Three-Dimensional Neurophenotyping of Adult Zebrafish Behavior
por: Cachat, Jonathan, et al.
Publicado: (2011) -
Exhaustive identification of conserved upstream open reading frames with potential translational regulatory functions from animal genomes
por: Takahashi, Hiro, et al.
Publicado: (2020) -
Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning
por: Yang, Zhutian, et al.
Publicado: (2016) -
Machine learning boosts three-dimensional bioprinting
por: Ning, Hongwei, et al.
Publicado: (2023) -
Eye-Tracking Feature Extraction for Biometric Machine Learning
por: Lim, Jia Zheng, et al.
Publicado: (2022)