Cargando…
Medical imaging deep learning with differential privacy
The successful training of deep learning models for diagnostic deployment in medical imaging applications requires large volumes of data. Such data cannot be procured without consideration for patient privacy, mandated both by legal regulations and ethical requirements of the medical profession. Dif...
Autores principales: | Ziller, Alexander, Usynin, Dmitrii, Braren, Rickmer, Makowski, Marcus, Rueckert, Daniel, Kaissis, Georgios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242021/ https://www.ncbi.nlm.nih.gov/pubmed/34188157 http://dx.doi.org/10.1038/s41598-021-93030-0 |
Ejemplares similares
-
Privacy: An Axiomatic Approach
por: Ziller, Alexander, et al.
Publicado: (2022) -
Efficient, high-performance semantic segmentation using multi-scale feature extraction
por: Knolle, Moritz, et al.
Publicado: (2021) -
Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study
por: Dou, Qi, et al.
Publicado: (2021) -
Deep Convolutional Neural Network-Assisted Feature Extraction for Diagnostic Discrimination and Feature Visualization in Pancreatic Ductal Adenocarcinoma (PDAC) versus Autoimmune Pancreatitis (AIP)
por: Ziegelmayer, Sebastian, et al.
Publicado: (2020) -
Author Correction: Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study
por: Dou, Qi, et al.
Publicado: (2022)