Cargando…
Gender Bias in the News: A Scalable Topic Modelling and Visualization Framework
We present a topic modelling and data visualization methodology to examine gender-based disparities in news articles by topic. Existing research in topic modelling is largely focused on the text mining of closed corpora, i.e., those that include a fixed collection of composite texts. We showcase a m...
Autores principales: | Rao, Prashanth, Taboada, Maite |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242240/ https://www.ncbi.nlm.nih.gov/pubmed/34222857 http://dx.doi.org/10.3389/frai.2021.664737 |
Ejemplares similares
-
Characterising Online News Comments: A Multi-Dimensional Cruise Through Online Registers
por: Ehret, Katharina, et al.
Publicado: (2021) -
Topic2features: a novel framework to classify noisy and sparse textual data using LDA topic distributions
por: Wahid, Junaid Abdul, et al.
Publicado: (2021) -
Exploring gender biases in ML and AI academic research through systematic literature review
por: Shrestha, Sunny, et al.
Publicado: (2022) -
Design of news recommendation model based on sub-attention news encoder
por: Zhang, Wenting
Publicado: (2023) -
Modelling Speaker Attribution in Narrative Texts With Biased and Bias-Adjustable Neural Networks
por: Dönicke, Tillmann, et al.
Publicado: (2022)