Cargando…

Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation

De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and e...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Zhi-Fang, Shen, Zhuo, Chao, Qing, Yan, Zhen, Ge, Xuan-Liang, Lu, Tiancong, Zheng, Haiyan, Qian, Chun-Rong, Wang, Bai-Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242269/
https://www.ncbi.nlm.nih.gov/pubmed/33385613
http://dx.doi.org/10.1016/j.gpb.2020.12.004
_version_ 1783715597768458240
author Gao, Zhi-Fang
Shen, Zhuo
Chao, Qing
Yan, Zhen
Ge, Xuan-Liang
Lu, Tiancong
Zheng, Haiyan
Qian, Chun-Rong
Wang, Bai-Chen
author_facet Gao, Zhi-Fang
Shen, Zhuo
Chao, Qing
Yan, Zhen
Ge, Xuan-Liang
Lu, Tiancong
Zheng, Haiyan
Qian, Chun-Rong
Wang, Bai-Chen
author_sort Gao, Zhi-Fang
collection PubMed
description De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the “sink” stage to the “source” stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.
format Online
Article
Text
id pubmed-8242269
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-82422692021-07-02 Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation Gao, Zhi-Fang Shen, Zhuo Chao, Qing Yan, Zhen Ge, Xuan-Liang Lu, Tiancong Zheng, Haiyan Qian, Chun-Rong Wang, Bai-Chen Genomics Proteomics Bioinformatics Original Research De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the “sink” stage to the “source” stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation. Elsevier 2020-08 2020-12-30 /pmc/articles/PMC8242269/ /pubmed/33385613 http://dx.doi.org/10.1016/j.gpb.2020.12.004 Text en © 2020 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Original Research
Gao, Zhi-Fang
Shen, Zhuo
Chao, Qing
Yan, Zhen
Ge, Xuan-Liang
Lu, Tiancong
Zheng, Haiyan
Qian, Chun-Rong
Wang, Bai-Chen
Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation
title Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation
title_full Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation
title_fullStr Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation
title_full_unstemmed Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation
title_short Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation
title_sort large-scale proteomic and phosphoproteomic analyses of maize seedling leaves during de-etiolation
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242269/
https://www.ncbi.nlm.nih.gov/pubmed/33385613
http://dx.doi.org/10.1016/j.gpb.2020.12.004
work_keys_str_mv AT gaozhifang largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation
AT shenzhuo largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation
AT chaoqing largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation
AT yanzhen largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation
AT gexuanliang largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation
AT lutiancong largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation
AT zhenghaiyan largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation
AT qianchunrong largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation
AT wangbaichen largescaleproteomicandphosphoproteomicanalysesofmaizeseedlingleavesduringdeetiolation