Cargando…
Denoising Autoencoder, A Deep Learning Algorithm, Aids the Identification of A Novel Molecular Signature of Lung Adenocarcinoma
Precise biomarker development is a key step in disease management. However, most of the published biomarkers were derived from a relatively small number of samples with supervised approaches. Recent advances in unsupervised machine learning promise to leverage very large datasets for making better p...
Autores principales: | Wang, Jun, Xie, Xueying, Shi, Junchao, He, Wenjun, Chen, Qi, Chen, Liang, Gu, Wanjun, Zhou, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242334/ https://www.ncbi.nlm.nih.gov/pubmed/33346087 http://dx.doi.org/10.1016/j.gpb.2019.02.003 |
Ejemplares similares
-
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Single-cell RNA-seq denoising using a deep count autoencoder
por: Eraslan, Gökcen, et al.
Publicado: (2019) -
Association Analysis of Deep Genomic Features Extracted by Denoising Autoencoders in Breast Cancer
por: Liu, Qian, et al.
Publicado: (2019) -
A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM
por: Gao, Xile, et al.
Publicado: (2019) -
Rapid, Reference-Free human genotype imputation with denoising autoencoders
por: Dias, Raquel, et al.
Publicado: (2022)