Cargando…
A multi‐class COVID‐19 segmentation network with pyramid attention and edge loss in CT images
At the end of 2019, a novel coronavirus COVID‐19 broke out. Due to its high contagiousness, more than 74 million people have been infected worldwide. Automatic segmentation of the COVID‐19 lesion area in CT images is an effective auxiliary medical technology which can quantitatively diagnose and jud...
Autores principales: | Yu, Fuli, Zhu, Yu, Qin, Xiangxiang, Xin, Ying, Yang, Dawei, Xu, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242907/ https://www.ncbi.nlm.nih.gov/pubmed/34226836 http://dx.doi.org/10.1049/ipr2.12249 |
Ejemplares similares
-
Semi-supervised nuclei segmentation based on multi-edge features fusion attention network
por: Li, Huachang, et al.
Publicado: (2023) -
Dermoscopic image segmentation based on Pyramid Residual Attention Module
por: Jiang, Yun, et al.
Publicado: (2022) -
COVID-19 lesion discrimination and localization network based on multi-receptive field attention module on CT images
por: Ma, Xia, et al.
Publicado: (2021) -
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
Lung_PAYNet: a pyramidal attention based deep learning network for lung nodule segmentation
por: Bruntha, P. Malin, et al.
Publicado: (2022)