Cargando…

Diagnostic potential of extracellular vesicle-associated microRNA-10b and tumor markers for lung adenocarcinoma

MicroRNAs (miRNAs/miRs) in extracellular vesicles (EVs) are potential diagnostic markers. The purpose of the present study was to investigate potential EV miRNA biomarkers for lung adenocarcinoma (LUAD). Potential miRNAs were identified by searching public databases and verified by examining clinica...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Guangda, Xie, Hongya, Wei, Tengteng, Zhu, Donglin, Zhang, Chuanyu, Yang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243083/
https://www.ncbi.nlm.nih.gov/pubmed/34257722
http://dx.doi.org/10.3892/ol.2021.12875
Descripción
Sumario:MicroRNAs (miRNAs/miRs) in extracellular vesicles (EVs) are potential diagnostic markers. The purpose of the present study was to investigate potential EV miRNA biomarkers for lung adenocarcinoma (LUAD). Potential miRNAs were identified by searching public databases and verified by examining clinical samples. The diagnostic value of EV-associated miR-10b, plasma miR-10b and tumor markers (TMs), including α-fetoprotein (AFP), neuron-specific enolase, carcinoembryonic antigen (CEA), cytokeratin 19 fragment 21-1 (CYFRA211), pro-gastrin-releasing-peptide, carbohydrate antigen (CA)125, CA153, CA199 and CA724, was evaluated via receiver operating characteristic curve analysis. By searching the Gene Expression Omnibus and The Cancer Genome Atlas databases, miR-10b was identified as a potential biomarker. The analysis of clinical samples suggested that EV-associated miR-10b from plasma was significantly differentially expressed between LUAD and control samples. EV-associated miR-10b could function as a diagnostic marker for LUAD, with an AUC of 0.998, which was higher than the AUCs for TMs such as AFP, CEA, CYFRA211, CA125, CA153, CA199, CA724, pro-gastrin-releasing-peptide and neuron-specific enolase. In conclusion, EV-associated miR-10b may be a potential diagnostic biomarker for LUAD that is superior to plasma miR-10b and TMs.