Cargando…
Development of a Bioartificial Vascular Pancreas
Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furth...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243137/ https://www.ncbi.nlm.nih.gov/pubmed/34262686 http://dx.doi.org/10.1177/20417314211027714 |
_version_ | 1783715711008374784 |
---|---|
author | Han, Edward X Wang, Juan Kural, Mehmet Jiang, Bo Leiby, Katherine L Chowdhury, Nazar Tellides, George Kibbey, Richard G Lawson, Jeffrey H Niklason, Laura E |
author_facet | Han, Edward X Wang, Juan Kural, Mehmet Jiang, Bo Leiby, Katherine L Chowdhury, Nazar Tellides, George Kibbey, Richard G Lawson, Jeffrey H Niklason, Laura E |
author_sort | Han, Edward X |
collection | PubMed |
description | Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO(2) of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes. |
format | Online Article Text |
id | pubmed-8243137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-82431372021-07-13 Development of a Bioartificial Vascular Pancreas Han, Edward X Wang, Juan Kural, Mehmet Jiang, Bo Leiby, Katherine L Chowdhury, Nazar Tellides, George Kibbey, Richard G Lawson, Jeffrey H Niklason, Laura E J Tissue Eng Original Article Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO(2) of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes. SAGE Publications 2021-06-28 /pmc/articles/PMC8243137/ /pubmed/34262686 http://dx.doi.org/10.1177/20417314211027714 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Article Han, Edward X Wang, Juan Kural, Mehmet Jiang, Bo Leiby, Katherine L Chowdhury, Nazar Tellides, George Kibbey, Richard G Lawson, Jeffrey H Niklason, Laura E Development of a Bioartificial Vascular Pancreas |
title | Development of a Bioartificial Vascular Pancreas |
title_full | Development of a Bioartificial Vascular Pancreas |
title_fullStr | Development of a Bioartificial Vascular Pancreas |
title_full_unstemmed | Development of a Bioartificial Vascular Pancreas |
title_short | Development of a Bioartificial Vascular Pancreas |
title_sort | development of a bioartificial vascular pancreas |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243137/ https://www.ncbi.nlm.nih.gov/pubmed/34262686 http://dx.doi.org/10.1177/20417314211027714 |
work_keys_str_mv | AT hanedwardx developmentofabioartificialvascularpancreas AT wangjuan developmentofabioartificialvascularpancreas AT kuralmehmet developmentofabioartificialvascularpancreas AT jiangbo developmentofabioartificialvascularpancreas AT leibykatherinel developmentofabioartificialvascularpancreas AT chowdhurynazar developmentofabioartificialvascularpancreas AT tellidesgeorge developmentofabioartificialvascularpancreas AT kibbeyrichardg developmentofabioartificialvascularpancreas AT lawsonjeffreyh developmentofabioartificialvascularpancreas AT niklasonlaurae developmentofabioartificialvascularpancreas |