Cargando…
A Machine Learning Bioinformatics Method to Predict Biological Activity from Biosynthetic Gene Clusters
[Image: see text] Research in natural products, the genetically encoded small molecules produced by organisms in an idiosyncratic fashion, deals with molecular structure, biosynthesis, and biological activity. Bioinformatics analyses of microbial genomes can successfully reveal the genetic instructi...
Autores principales: | Walker, Allison S., Clardy, Jon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243324/ https://www.ncbi.nlm.nih.gov/pubmed/34042443 http://dx.doi.org/10.1021/acs.jcim.0c01304 |
Ejemplares similares
-
Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning
por: Riedling, Olivia, et al.
Publicado: (2023) -
A deep learning genome-mining strategy for biosynthetic gene cluster prediction
por: Hannigan, Geoffrey D, et al.
Publicado: (2019) -
Diversity and taxonomic distribution of bacterial biosynthetic gene clusters predicted to produce compounds with therapeutically relevant bioactivities
por: Beck, Max L, et al.
Publicado: (2023) -
Transporter genes in biosynthetic gene clusters predict metabolite characteristics and siderophore activity
por: Crits-Christoph, Alexander, et al.
Publicado: (2021) -
NPOmix: A machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters
por: Leão, Tiago F, et al.
Publicado: (2022)