Cargando…

Clinical impact of copy number variation changes in bladder cancer samples

The aim of the present study was to detect copy number variations (CNVs) related to tumour progression and metastasis of urothelial carcinoma through whole-genome scanning. A total of 30 bladder cancer samples staged from pTa to pT4 were included in the study. DNA was extracted from freshly frozen t...

Descripción completa

Detalles Bibliográficos
Autores principales: Spasova, Victoria, Mladenov, Boris, Rangelov, Simeon, Hammoudeh, Zora, Nesheva, Desislava, Serbezov, Dimitar, Staneva, Rada, Hadjidekova, Savina, Ganev, Mihail, Balabanski, Lubomir, Vazharova, Radoslava, Slavov, Chavdar, Toncheva, Draga, Antonova, Olga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243332/
https://www.ncbi.nlm.nih.gov/pubmed/34257714
http://dx.doi.org/10.3892/etm.2021.10333
Descripción
Sumario:The aim of the present study was to detect copy number variations (CNVs) related to tumour progression and metastasis of urothelial carcinoma through whole-genome scanning. A total of 30 bladder cancer samples staged from pTa to pT4 were included in the study. DNA was extracted from freshly frozen tissue via standard phenol-chloroform extraction and CNV analysis was performed on two alternative platforms (CytoChip Oligo aCGH, 4x44K and Infinium OncoArray-500K BeadChip; Illumina, Inc.). Data were analysed with BlueFuse Multi software and Karyostudio, respectively. The results highlight the role of genomic imbalances in regions containing genes with metastatic and proliferative potential for tumour invasion. A high level of genomic instability in uroepithelial tumours was observed and a total of 524 aberrations, including 175 losses and 349 gains, were identified. The most prevalent genetic imbalances affected the following regions: 1p, 1q, 2q, 4p, 4q, 5p, 5q, 6p, 6q, 7q, 8q, 9p, 9q, 10p, 10q, 11q, 13q and 17q. High-grade tumours more frequently harboured genomic imbalances (n=227) than low-grade tumours (n=103). A total of 36 CNVs in high-grade bladder tumours were detected in chromosomes 1-5, 8-11, 14, 17, 19 and 20. Furthermore, five loss of heterozygosity variants containing 176 genes were observed in high-grade bladder cancer and may be used as potential targets for precision therapy. Revealing specific chromosomal regions related to the metastatic potential of uroepithelial tumours may lay a foundation for implementing molecular CNV profiling of bladder tumours as part of a routine progression risk estimation strategy, thus expanding the personalized therapeutic approach.