Cargando…
Water‐suppression cycling 3‐T cardiac (1)H‐MRS detects altered creatine and choline in patients with aortic or mitral stenosis
Cardiac proton spectroscopy ((1)H‐MRS) is widely used to quantify lipids. Other metabolites (e.g. creatine and choline) are clinically relevant but more challenging to quantify because of their low concentrations (approximately 10 mmol/L) and because of cardiac motion. To quantify cardiac creatine a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243349/ https://www.ncbi.nlm.nih.gov/pubmed/33826181 http://dx.doi.org/10.1002/nbm.4513 |
_version_ | 1783715742979457024 |
---|---|
author | Ding, Belinda Peterzan, Mark Mózes, Ferenc E. Rider, Oliver J. Valkovič, Ladislav Rodgers, Christopher T. |
author_facet | Ding, Belinda Peterzan, Mark Mózes, Ferenc E. Rider, Oliver J. Valkovič, Ladislav Rodgers, Christopher T. |
author_sort | Ding, Belinda |
collection | PubMed |
description | Cardiac proton spectroscopy ((1)H‐MRS) is widely used to quantify lipids. Other metabolites (e.g. creatine and choline) are clinically relevant but more challenging to quantify because of their low concentrations (approximately 10 mmol/L) and because of cardiac motion. To quantify cardiac creatine and choline, we added water‐suppression cycling (WSC) to two single‐voxel spectroscopy sequences (STEAM and PRESS). WSC introduces controlled residual water signals that alternate between positive and negative phases from transient to transient, enabling robust phase and frequency correction. Moreover, a particular weighted sum of transients eliminates residual water signals without baseline distortion. We compared WSC and the vendor's standard ‘WET’ water suppression in phantoms. Next, we tested repeatability in 10 volunteers (seven males, three females; age 29.3 ± 4.0 years; body mass index [BMI] 23.7 ± 4.1 kg/m(2)). Fat fraction, creatine concentration and choline concentration when quantified by STEAM‐WET were 0.30% ± 0.11%, 29.6 ± 7.0 μmol/g and 7.9 ± 6.7 μmol/g, respectively; and when quantified by PRESS‐WSC they were 0.30% ± 0.15%, 31.5 ± 3.1 μmol/g and 8.3 ± 4.4 μmol/g, respectively. Compared with STEAM‐WET, PRESS‐WSC gave spectra whose fitting quality expressed by Cramér‐Rao lower bounds improved by 26% for creatine and 32% for choline. Repeatability of metabolite concentration measurements improved by 72% for creatine and 40% for choline. We also compared STEAM‐WET and PRESS‐WSC in 13 patients with severe symptomatic aortic or mitral stenosis indicated for valve replacement surgery (10 males, three females; age 75.9 ± 6.3 years; BMI 27.4 ± 4.3 kg/m(2)). Spectra were of analysable quality in eight patients for STEAM‐WET, and in nine for PRESS‐WSC. We observed comparable lipid concentrations with those in healthy volunteers, significantly reduced creatine concentrations, and a trend towards decreased choline concentrations. We conclude that PRESS‐WSC offers improved performance and reproducibility for the quantification of cardiac lipids, creatine and choline concentrations in healthy volunteers at 3 T. It also offers improved performance compared with STEAM‐WET for detecting altered creatine and choline concentrations in patients with valve disease. |
format | Online Article Text |
id | pubmed-8243349 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82433492021-07-02 Water‐suppression cycling 3‐T cardiac (1)H‐MRS detects altered creatine and choline in patients with aortic or mitral stenosis Ding, Belinda Peterzan, Mark Mózes, Ferenc E. Rider, Oliver J. Valkovič, Ladislav Rodgers, Christopher T. NMR Biomed Research Articles Cardiac proton spectroscopy ((1)H‐MRS) is widely used to quantify lipids. Other metabolites (e.g. creatine and choline) are clinically relevant but more challenging to quantify because of their low concentrations (approximately 10 mmol/L) and because of cardiac motion. To quantify cardiac creatine and choline, we added water‐suppression cycling (WSC) to two single‐voxel spectroscopy sequences (STEAM and PRESS). WSC introduces controlled residual water signals that alternate between positive and negative phases from transient to transient, enabling robust phase and frequency correction. Moreover, a particular weighted sum of transients eliminates residual water signals without baseline distortion. We compared WSC and the vendor's standard ‘WET’ water suppression in phantoms. Next, we tested repeatability in 10 volunteers (seven males, three females; age 29.3 ± 4.0 years; body mass index [BMI] 23.7 ± 4.1 kg/m(2)). Fat fraction, creatine concentration and choline concentration when quantified by STEAM‐WET were 0.30% ± 0.11%, 29.6 ± 7.0 μmol/g and 7.9 ± 6.7 μmol/g, respectively; and when quantified by PRESS‐WSC they were 0.30% ± 0.15%, 31.5 ± 3.1 μmol/g and 8.3 ± 4.4 μmol/g, respectively. Compared with STEAM‐WET, PRESS‐WSC gave spectra whose fitting quality expressed by Cramér‐Rao lower bounds improved by 26% for creatine and 32% for choline. Repeatability of metabolite concentration measurements improved by 72% for creatine and 40% for choline. We also compared STEAM‐WET and PRESS‐WSC in 13 patients with severe symptomatic aortic or mitral stenosis indicated for valve replacement surgery (10 males, three females; age 75.9 ± 6.3 years; BMI 27.4 ± 4.3 kg/m(2)). Spectra were of analysable quality in eight patients for STEAM‐WET, and in nine for PRESS‐WSC. We observed comparable lipid concentrations with those in healthy volunteers, significantly reduced creatine concentrations, and a trend towards decreased choline concentrations. We conclude that PRESS‐WSC offers improved performance and reproducibility for the quantification of cardiac lipids, creatine and choline concentrations in healthy volunteers at 3 T. It also offers improved performance compared with STEAM‐WET for detecting altered creatine and choline concentrations in patients with valve disease. John Wiley and Sons Inc. 2021-04-07 2021-07 /pmc/articles/PMC8243349/ /pubmed/33826181 http://dx.doi.org/10.1002/nbm.4513 Text en © 2021 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Ding, Belinda Peterzan, Mark Mózes, Ferenc E. Rider, Oliver J. Valkovič, Ladislav Rodgers, Christopher T. Water‐suppression cycling 3‐T cardiac (1)H‐MRS detects altered creatine and choline in patients with aortic or mitral stenosis |
title | Water‐suppression cycling 3‐T cardiac (1)H‐MRS detects altered creatine and choline in patients with aortic or mitral stenosis |
title_full | Water‐suppression cycling 3‐T cardiac (1)H‐MRS detects altered creatine and choline in patients with aortic or mitral stenosis |
title_fullStr | Water‐suppression cycling 3‐T cardiac (1)H‐MRS detects altered creatine and choline in patients with aortic or mitral stenosis |
title_full_unstemmed | Water‐suppression cycling 3‐T cardiac (1)H‐MRS detects altered creatine and choline in patients with aortic or mitral stenosis |
title_short | Water‐suppression cycling 3‐T cardiac (1)H‐MRS detects altered creatine and choline in patients with aortic or mitral stenosis |
title_sort | water‐suppression cycling 3‐t cardiac (1)h‐mrs detects altered creatine and choline in patients with aortic or mitral stenosis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243349/ https://www.ncbi.nlm.nih.gov/pubmed/33826181 http://dx.doi.org/10.1002/nbm.4513 |
work_keys_str_mv | AT dingbelinda watersuppressioncycling3tcardiac1hmrsdetectsalteredcreatineandcholineinpatientswithaorticormitralstenosis AT peterzanmark watersuppressioncycling3tcardiac1hmrsdetectsalteredcreatineandcholineinpatientswithaorticormitralstenosis AT mozesference watersuppressioncycling3tcardiac1hmrsdetectsalteredcreatineandcholineinpatientswithaorticormitralstenosis AT rideroliverj watersuppressioncycling3tcardiac1hmrsdetectsalteredcreatineandcholineinpatientswithaorticormitralstenosis AT valkovicladislav watersuppressioncycling3tcardiac1hmrsdetectsalteredcreatineandcholineinpatientswithaorticormitralstenosis AT rodgerschristophert watersuppressioncycling3tcardiac1hmrsdetectsalteredcreatineandcholineinpatientswithaorticormitralstenosis |