Cargando…
Insufficient blood supply of fovea capitis femoris, a risk factor of femoral head osteonecrosis
BACKGROUND: A defective nutrient foramen in the fovea capitis femoris was hypothesized to reflect the blood circulation pattern of the femoral head, leading to insufficient blood supply and causing osteonecrosis of the femoral head. METHODS: Normal and necrotic femoral head specimens were collected....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243432/ https://www.ncbi.nlm.nih.gov/pubmed/34193218 http://dx.doi.org/10.1186/s13018-021-02564-6 |
Sumario: | BACKGROUND: A defective nutrient foramen in the fovea capitis femoris was hypothesized to reflect the blood circulation pattern of the femoral head, leading to insufficient blood supply and causing osteonecrosis of the femoral head. METHODS: Normal and necrotic femoral head specimens were collected. The necrotic femoral head group was divided into a non-traumatic and traumatic subgroup. 3D scanning was applied to read the number, the diameter, and the total cross-sectional area of the nutrient foramina in the fovea capitis femoris. Chi-squared tests and independent t-tests were used to detect any differences in the categorical and continuous demographic variables. Logistic regression models were used to estimate the odds ratio (OR) for non-traumatic and traumatic osteonecrosis in different characteristic comparisons. RESULTS: A total of 249 femoral head specimens were collected, including 100 normal femoral heads and 149 necrotic femoral heads. The necrotic femoral head group revealed a significantly higher percentage of no nutrient foramen (p < 0.001), a smaller total area of nutrient foramina (p < 0.001), a smaller mean area of nutrient foramina (p = 0.014), a lower maximum diameter of the nutrient foramen (p < 0.001), and a lower minimum diameter of the nutrient foramen (p < 0.001) than the normal femoral head group. The logistic regression model demonstrated an increasing number of nutrient foramina (crude OR, 0.51; p < 0.001), a larger total area of nutrient foramina (crude OR, 0.58; p < 0.001), a larger mean area of nutrient foramina (crude OR, 0.52; p = 0.023), a greater maximum diameter of the nutrient foramen (crude OR, 0.26; p < 0.001), and greater minimum diameter of the nutrient foramen (crude OR, 0.20; p < 0.001) significantly associated with reduced odds of osteonecrosis of the femoral head (ONFH). The necrotic femoral head group was further divided into 118 non-traumatic and 31 traumatic necrotic subgroups, and no significant difference was observed in any characteristics between them. CONCLUSIONS: Characteristics of the nutrient foramen in the fovea capitis femoris showed a significant defect of necrotic than normal femoral heads, and significantly reduced odds were associated with the higher abundance of the nutrient foramen in ONFH. Therefore, the condition of the nutrient foramen might be the indicator of ONFH. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13018-021-02564-6. |
---|