Cargando…
LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis
BACKGROUND: Long non-coding RNAs (lncRNAs) are widely reported to be involved in the development of human diseases. HLA complex P5 (HCP5) deregulation is associated with various diseases. However, the function of HCP5 in diabetic nephropathy (DN) is unclear. METHODS: Human glomerular mesangial cells...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243433/ https://www.ncbi.nlm.nih.gov/pubmed/34187448 http://dx.doi.org/10.1186/s12902-021-00781-y |
_version_ | 1783715750269157376 |
---|---|
author | Wang, Xuan Liu, Yan Rong, Jian Wang, Kai |
author_facet | Wang, Xuan Liu, Yan Rong, Jian Wang, Kai |
author_sort | Wang, Xuan |
collection | PubMed |
description | BACKGROUND: Long non-coding RNAs (lncRNAs) are widely reported to be involved in the development of human diseases. HLA complex P5 (HCP5) deregulation is associated with various diseases. However, the function of HCP5 in diabetic nephropathy (DN) is unclear. METHODS: Human glomerular mesangial cells (HGMCs) were treated with high glucose (HG) to establish DN cell models. The expression of HCP5, miR-93-5p and high mobility group AT-hook 2 (HMGA2) mRNA was detected using quantitative polymerase chain reaction (QPCR). Cell proliferation and cell apoptosis were assessed using cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The expression of apoptosis- and fibrosis-related proteins and HMGA2 protein was quantified by western blot. The release of pro-inflammatory factor was checked using enzyme-linked immunosorbent assay (ELISA). The predicted relationship between miR-93-5p and HCP5 or HMGA2 was verified using dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. RESULTS: The expression of HCP5 and HMGA2 was enhanced, while the expression of miR-93-5p was declined in DN serum samples and HG-treated HGMCs. HCP5 knockdown or miR-93-5p restoration ameliorated HG-induced HGMC proliferation, fibrosis and inflammation. MiR-93-5p was a target of HCP5, and miR-93-5p inhibition reversed the effects caused by HCP5 knockdown. Moreover, HMGA2 was a target of miR-93-5p, and HMGA2 overexpression abolished the effects of miR-93-5p restoration. HCP5 knockdown inhibited the AKT/mTOR signaling pathway. CONCLUSION: HCP5 was implicated in DN progression by modulating the miR-93-5p/HMGA2 axis, which provided new insights into the understanding of DN pathogenesis. |
format | Online Article Text |
id | pubmed-8243433 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-82434332021-06-30 LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis Wang, Xuan Liu, Yan Rong, Jian Wang, Kai BMC Endocr Disord Research Article BACKGROUND: Long non-coding RNAs (lncRNAs) are widely reported to be involved in the development of human diseases. HLA complex P5 (HCP5) deregulation is associated with various diseases. However, the function of HCP5 in diabetic nephropathy (DN) is unclear. METHODS: Human glomerular mesangial cells (HGMCs) were treated with high glucose (HG) to establish DN cell models. The expression of HCP5, miR-93-5p and high mobility group AT-hook 2 (HMGA2) mRNA was detected using quantitative polymerase chain reaction (QPCR). Cell proliferation and cell apoptosis were assessed using cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The expression of apoptosis- and fibrosis-related proteins and HMGA2 protein was quantified by western blot. The release of pro-inflammatory factor was checked using enzyme-linked immunosorbent assay (ELISA). The predicted relationship between miR-93-5p and HCP5 or HMGA2 was verified using dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. RESULTS: The expression of HCP5 and HMGA2 was enhanced, while the expression of miR-93-5p was declined in DN serum samples and HG-treated HGMCs. HCP5 knockdown or miR-93-5p restoration ameliorated HG-induced HGMC proliferation, fibrosis and inflammation. MiR-93-5p was a target of HCP5, and miR-93-5p inhibition reversed the effects caused by HCP5 knockdown. Moreover, HMGA2 was a target of miR-93-5p, and HMGA2 overexpression abolished the effects of miR-93-5p restoration. HCP5 knockdown inhibited the AKT/mTOR signaling pathway. CONCLUSION: HCP5 was implicated in DN progression by modulating the miR-93-5p/HMGA2 axis, which provided new insights into the understanding of DN pathogenesis. BioMed Central 2021-06-29 /pmc/articles/PMC8243433/ /pubmed/34187448 http://dx.doi.org/10.1186/s12902-021-00781-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Wang, Xuan Liu, Yan Rong, Jian Wang, Kai LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis |
title | LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis |
title_full | LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis |
title_fullStr | LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis |
title_full_unstemmed | LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis |
title_short | LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis |
title_sort | lncrna hcp5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the mir-93-5p/hmga2 axis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243433/ https://www.ncbi.nlm.nih.gov/pubmed/34187448 http://dx.doi.org/10.1186/s12902-021-00781-y |
work_keys_str_mv | AT wangxuan lncrnahcp5knockdowninhibitshighglucoseinducedexcessiveproliferationfibrosisandinflammationofhumanglomerularmesangialcellsbyregulatingthemir935phmga2axis AT liuyan lncrnahcp5knockdowninhibitshighglucoseinducedexcessiveproliferationfibrosisandinflammationofhumanglomerularmesangialcellsbyregulatingthemir935phmga2axis AT rongjian lncrnahcp5knockdowninhibitshighglucoseinducedexcessiveproliferationfibrosisandinflammationofhumanglomerularmesangialcellsbyregulatingthemir935phmga2axis AT wangkai lncrnahcp5knockdowninhibitshighglucoseinducedexcessiveproliferationfibrosisandinflammationofhumanglomerularmesangialcellsbyregulatingthemir935phmga2axis |