Cargando…
DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software
BACKGROUND: Any Monte Carlo simulation of dose delivery using medical accelerator-generated megavolt photon beams begins by simulating electrons of the primary electron beam interacting with a target. Because the electron beam characteristics of any single accelerator are unique and generally unknow...
Autores principales: | Tabor, Zbisław, Kabat, Damian, Waligórski, Michael P. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243564/ https://www.ncbi.nlm.nih.gov/pubmed/34187495 http://dx.doi.org/10.1186/s13014-021-01847-w |
Ejemplares similares
-
Correction to: DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software
por: Tabor, Zbisław, et al.
Publicado: (2022) -
PRIMO Monte Carlo software as a tool for commissioning of an external beam radiotherapy treatment planning system
por: Calvo-Ortega, Juan-Francisco, et al.
Publicado: (2023) -
Validation of PRIMO Monte Carlo Model of Clinac(®)iX 6MV Photon Beam
por: Sarin, B., et al.
Publicado: (2020) -
Monte Carlo simulation of linac using PRIMO
por: Li, Yang, et al.
Publicado: (2022) -
PRIMO Monte Carlo software benchmarked against a reference dosimetry dataset for 6 MV photon beams from Varian linacs
por: Hermida–López, Marcelino, et al.
Publicado: (2018)