Cargando…
Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms
BACKGROUND AND AIM: Copper (Cu) is a vital mineral involved in various physiological and biochemical processes, growth, and productivity of animals and birds. Birds can absorb only a small fraction of Cu and most is excreted, contaminating soil and aquatic environment which is toxic for microorganis...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Veterinary World
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243697/ https://www.ncbi.nlm.nih.gov/pubmed/34220143 http://dx.doi.org/10.14202/vetworld.2021.1371-1379 |
_version_ | 1783715799410671616 |
---|---|
author | Aminullah, Noor Prabhu, T. M. Naik, Jaya Suresh, B. N. Indresh, H. C. |
author_facet | Aminullah, Noor Prabhu, T. M. Naik, Jaya Suresh, B. N. Indresh, H. C. |
author_sort | Aminullah, Noor |
collection | PubMed |
description | BACKGROUND AND AIM: Copper (Cu) is a vital mineral involved in various physiological and biochemical processes, growth, and productivity of animals and birds. Birds can absorb only a small fraction of Cu and most is excreted, contaminating soil and aquatic environment which is toxic for microorganisms, plants, animals, and humans. This study evaluated the possibility of use of organic and nanoparticles sources of Cu to reduce supplementation level without compromising the performance of breeder hens. MATERIALS AND METHODS: A total of 224 Swarnadhara breeder hens were divided into seven treatment groups having four replicates in each. The basal diet (control) containing 20 ppm inorganic Cu (100% of standard recommendation) and six test diets containing 20, 15, and 10 ppm (100, 75, and 50% of standard recommendation) from Cu organic source, and 15, 10, and 5 ppm (75, 50, and 25%) from Cu nanoparticles (Cu-NP), were prepared and offered to respective treatment groups for a duration of 20 weeks. RESULTS: The hen day egg production, hen housed egg production, feed conversion ratio egg mass, albumen index, yolk index, total fat content, and color score were not affected by the source and inclusion level of Cu. The feed intake was significantly (p<0.05) lower at 15 ppm and egg weight was significantly (p<0.05) higher at 10 ppm Cu-NP supplemental level, but was non-significant in other treatment groups compared to control. The body weight gain was significantly (p<0.05) higher at 20 ppm organic and 15 ppm Cu-NP inclusion. The egg shape index and Haugh unit were significantly (p<0.05) lower at 10 and 15 ppm of Cu-NP inclusion level, respectively. The shell thickness was improved (p<0.05) at 20 and 15 ppm organic and 15 and 10 ppm Cu-NP inclusion level. The egg fertility rate was shown to be significantly (p<0.05) higher at 20 ppm organic Cu inclusion group, but the hatchability based on total number of eggs set improved (p<0.05) at 20 and 15 ppm organic Cu inclusion level while all treatment groups were comparable to control. The hatchability of fertilized egg and chick’s quality significantly (p<0.05) improved, while embryonic and chick mortality after hatching before-sorting was significantly (p<0.05) reduced at 15 ppm of Cu-NP inclusion group. CONCLUSION: It was concluded that the inorganic Cu can be replaced with 50% of organic or 25% of nanoparticles form of Cu without jeopardizing the breeder hens’ productivity, egg quality characteristics, hatchability, and progeny. |
format | Online Article Text |
id | pubmed-8243697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Veterinary World |
record_format | MEDLINE/PubMed |
spelling | pubmed-82436972021-07-02 Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms Aminullah, Noor Prabhu, T. M. Naik, Jaya Suresh, B. N. Indresh, H. C. Vet World Research Article BACKGROUND AND AIM: Copper (Cu) is a vital mineral involved in various physiological and biochemical processes, growth, and productivity of animals and birds. Birds can absorb only a small fraction of Cu and most is excreted, contaminating soil and aquatic environment which is toxic for microorganisms, plants, animals, and humans. This study evaluated the possibility of use of organic and nanoparticles sources of Cu to reduce supplementation level without compromising the performance of breeder hens. MATERIALS AND METHODS: A total of 224 Swarnadhara breeder hens were divided into seven treatment groups having four replicates in each. The basal diet (control) containing 20 ppm inorganic Cu (100% of standard recommendation) and six test diets containing 20, 15, and 10 ppm (100, 75, and 50% of standard recommendation) from Cu organic source, and 15, 10, and 5 ppm (75, 50, and 25%) from Cu nanoparticles (Cu-NP), were prepared and offered to respective treatment groups for a duration of 20 weeks. RESULTS: The hen day egg production, hen housed egg production, feed conversion ratio egg mass, albumen index, yolk index, total fat content, and color score were not affected by the source and inclusion level of Cu. The feed intake was significantly (p<0.05) lower at 15 ppm and egg weight was significantly (p<0.05) higher at 10 ppm Cu-NP supplemental level, but was non-significant in other treatment groups compared to control. The body weight gain was significantly (p<0.05) higher at 20 ppm organic and 15 ppm Cu-NP inclusion. The egg shape index and Haugh unit were significantly (p<0.05) lower at 10 and 15 ppm of Cu-NP inclusion level, respectively. The shell thickness was improved (p<0.05) at 20 and 15 ppm organic and 15 and 10 ppm Cu-NP inclusion level. The egg fertility rate was shown to be significantly (p<0.05) higher at 20 ppm organic Cu inclusion group, but the hatchability based on total number of eggs set improved (p<0.05) at 20 and 15 ppm organic Cu inclusion level while all treatment groups were comparable to control. The hatchability of fertilized egg and chick’s quality significantly (p<0.05) improved, while embryonic and chick mortality after hatching before-sorting was significantly (p<0.05) reduced at 15 ppm of Cu-NP inclusion group. CONCLUSION: It was concluded that the inorganic Cu can be replaced with 50% of organic or 25% of nanoparticles form of Cu without jeopardizing the breeder hens’ productivity, egg quality characteristics, hatchability, and progeny. Veterinary World 2021-05 2021-05-29 /pmc/articles/PMC8243697/ /pubmed/34220143 http://dx.doi.org/10.14202/vetworld.2021.1371-1379 Text en Copyright: © Aminullah, et al. https://creativecommons.org/licenses/by/4.0/Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Aminullah, Noor Prabhu, T. M. Naik, Jaya Suresh, B. N. Indresh, H. C. Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms |
title | Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms |
title_full | Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms |
title_fullStr | Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms |
title_full_unstemmed | Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms |
title_short | Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms |
title_sort | performance of swarnadhara breeder hens supplemented with reduced levels of different copper forms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243697/ https://www.ncbi.nlm.nih.gov/pubmed/34220143 http://dx.doi.org/10.14202/vetworld.2021.1371-1379 |
work_keys_str_mv | AT aminullahnoor performanceofswarnadharabreederhenssupplementedwithreducedlevelsofdifferentcopperforms AT prabhutm performanceofswarnadharabreederhenssupplementedwithreducedlevelsofdifferentcopperforms AT naikjaya performanceofswarnadharabreederhenssupplementedwithreducedlevelsofdifferentcopperforms AT sureshbn performanceofswarnadharabreederhenssupplementedwithreducedlevelsofdifferentcopperforms AT indreshhc performanceofswarnadharabreederhenssupplementedwithreducedlevelsofdifferentcopperforms |