Cargando…

Endothelial cell secreted VEGF-C enhances NSC VEGFR3 expression and promotes NSC survival

Although delivery of neural stem cell (NSC) as a therapeutic treatment for intracerebral hemorrhage (ICH) provides promise, NSC delivery typically has extremely low survival rates. Here, we investigate endothelial cell (EC) and pericyte (PC) interactions with NSC, where our results demonstrate that...

Descripción completa

Detalles Bibliográficos
Autores principales: Matta, Rita, Feng, Yan, Sansing, Lauren H., Gonzalez, Anjelica L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243729/
https://www.ncbi.nlm.nih.gov/pubmed/33836422
http://dx.doi.org/10.1016/j.scr.2021.102318
Descripción
Sumario:Although delivery of neural stem cell (NSC) as a therapeutic treatment for intracerebral hemorrhage (ICH) provides promise, NSC delivery typically has extremely low survival rates. Here, we investigate endothelial cell (EC) and pericyte (PC) interactions with NSC, where our results demonstrate that EC, and not PC, promote NSC cell proliferation and reduce cytotoxicity under glucose deprivation (GD). Additionally, NSC proliferation was increased upon treatment with EC conditioned media, inhibited with antagonism of VEGFR3. In an NSC + EC coculture we detected elevated levels of VEGF-C, not seen for NSC cultured alone. Exogenous VEGF-C induced NSC upregulation of VEGFR3, promoted proliferation, and reduced cytotoxicity. Finally, we delivered microbeads containing NSC + EC into a murine ICH cavity, where VEGF-C was increasingly present in the injury site, not seen upon delivery NSC encapsulated alone. These studies demonstrate that EC-secreted VEGF-C may promote NSC survival during injury, enhancing the potential for cell delivery therapies for stroke.