Cargando…
Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning
We present a new, computationally efficient framework to perform forward uncertainty quantification (UQ) in cardiac electrophysiology. We consider the monodomain model to describe the electrical activity in the cardiac tissue, coupled with the Aliev‐Panfilov model to characterize the ionic activity...
Autores principales: | Pagani, Stefano, Manzoni, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244126/ https://www.ncbi.nlm.nih.gov/pubmed/33599106 http://dx.doi.org/10.1002/cnm.3450 |
Ejemplares similares
-
Space–time shape uncertainties in the forward and inverse problem of electrocardiography
por: Gander, Lia, et al.
Publicado: (2021) -
Uncertainty quantification of bioassay functions for the internal dosimetry of radioiodine
por: Kwon, Tae-Eun, et al.
Publicado: (2020) -
Fast uncertainty quantification of tracer distribution in the brain interstitial fluid with multilevel and quasi Monte Carlo
por: Croci, Matteo, et al.
Publicado: (2020) -
Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid‐dynamics model of the pulmonary circulation
por: Paun, L. Mihaela, et al.
Publicado: (2020) -
Deep learning-based reduced order models in cardiac electrophysiology
por: Fresca, Stefania, et al.
Publicado: (2020)