Cargando…

Honeysuckle-derived microRNA2911 inhibits tumor growth by targeting TGF-β1

BACKGROUND: Honeysuckle is a time‐honored herb with anticancer activity in traditional Chinese medicine. Recently, accumulating reports are suggesting that the microRNAs in this medicinal plant not only play a physiological role in their original system, but also can be transmitted to another specie...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chunyan, Xu, Mengzhen, Yan, Luocheng, Wang, Yulian, Zhou, Zhen, Wang, Shaocong, Sun, Yajie, Zhang, Junfeng, Dong, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244210/
https://www.ncbi.nlm.nih.gov/pubmed/34187513
http://dx.doi.org/10.1186/s13020-021-00453-y
Descripción
Sumario:BACKGROUND: Honeysuckle is a time‐honored herb with anticancer activity in traditional Chinese medicine. Recently, accumulating reports are suggesting that the microRNAs in this medicinal plant not only play a physiological role in their original system, but also can be transmitted to another species as potential therapeutic components. In the numerous bioactive investigations, the anti-tumor effects of these microRNAs in the magical herb are rarely studied, especially the special miR2911, a honeysuckle-encoded atypical microRNA, with high stability during the boiling process and unique biological activity to target TGF-β1 mRNA. METHODS: Luciferase assay was conducted to test the ability of miR2911 to target TGF-β1 mRNA. ELISA was performed to determine the expression level of TGF-β1 of mouse colorectal adenocarcinoma CT26 cells when treated with miR2911 and tumor tissue in Sidt1(+/+) and Sidt1(−/−) mice. qRT-PCR was performed to examine the level of expression of miR2911. Tumor-bearing wild and nude mice were employed to evaluate the anti-tumor effect of honeysuckle and miR2911 in vivo. Tumor tissue necrosis was observed by H&E staining. Besides, the infiltration of T lymphocytes across solid tumors was tested by immunostaining staining. RESULTS: Our results showed that honeysuckle slowed the development of colon cancer down. Further research showed that miR2911 could bind strongly to TGF-β1 mRNA and down-regulate the expression of TGF-β1 and had a high stability under boiling and acid condition. Moreover, SIDT1 mediated dietary miR2911 inter-species absorption. And we found that miR2911 had a similar anticancer effect as honeysuckle. Mechanistically, miR2911 reversed the tumor-promoting effect of TGF-β1 by an increase of T lymphocytes infiltration, resulting in slowing the colon cancer process in immunocompetent mice. Consistent with this inference, the anti-tumor effect of miR2911 was revealed to be abolished in T cell immune deficiency mice. CONCLUSION: Taken together, honeysuckle-derived miR2911 showed an anti-tumor effect in colon cancer through targeting TGF-β1 mRNA. The down-regulation of TGF-β1 promoted T lymphocytes infiltration, and accordingly impeded the colon tumor development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13020-021-00453-y.