Cargando…

De novo crystal structure determination of double stranded RNA binding domain using only the sulfur anomalous diffraction in SAD phasing

Single-wavelength anomalous dispersion (SAD)-phasing using sulfur as the unique anomalous scatterer is a powerful method to solve the phase problem in protein crystallography. However, it is not yet widely used by non-expert crystallographers. We report here the structure determination of the double...

Descripción completa

Detalles Bibliográficos
Autores principales: Guimarães, Beatriz Gomes, Golinelli-Pimpaneau, Béatrice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244422/
https://www.ncbi.nlm.nih.gov/pubmed/34235491
http://dx.doi.org/10.1016/j.crstbi.2021.05.002
Descripción
Sumario:Single-wavelength anomalous dispersion (SAD)-phasing using sulfur as the unique anomalous scatterer is a powerful method to solve the phase problem in protein crystallography. However, it is not yet widely used by non-expert crystallographers. We report here the structure determination of the double stranded RNA binding domain of human dihydrouridine synthase using the sulfur-SAD method and highly redundant data collected at 1.8 ​Å (“off-edge”), at which the estimated overall anomalous signal was 1.08%. High multiplicity data were collected on a single crystal rotated along the ϕ or ω axis at different κ angles, with the primary beam intensity being attenuated from 50% to 95%, compared to data collection at 0.98 ​Å, to reduce radiation damage. SHELXD succeeded to locate 14 out 15 sulfur sites only using the data sets recorded with highest beam attenuation, which provided phases sufficient for structure solving. In an attempt to stimulate the use of sulfur-SAD phasing by a broader community of crystallographers, we describe our experimental strategy together with a compilation of previous successful cases, suggesting that sulfur-SAD phasing should be attempted for determining the de novo structure of any protein with average sulfur content diffracting better than 3 ​Å resolution.