Cargando…
Random forest machine learning method outperforms prehospital National Early Warning Score for predicting one-day mortality: A retrospective study
AIM OF THE STUDY: The National Early Warning Score (NEWS) is a validated method for predicting clinical deterioration in hospital wards, but its performance in prehospital settings remains controversial. Modern machine learning models may outperform traditional statistical analyses for predicting sh...
Autores principales: | Pirneskoski, Jussi, Tamminen, Joonas, Kallonen, Antti, Nurmi, Jouni, Kuisma, Markku, Olkkola, Klaus T., Hoppu, Sanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244434/ https://www.ncbi.nlm.nih.gov/pubmed/34223321 http://dx.doi.org/10.1016/j.resplu.2020.100046 |
Ejemplares similares
-
Machine learning model predicts short-term mortality among prehospital patients: A prospective development study from Finland
por: Tamminen, Joonas, et al.
Publicado: (2021) -
Trends in the national early warning score are associated with subsequent mortality – A prospective three-centre observational study with 11,331 general ward patients
por: Loisa, Eetu, et al.
Publicado: (2022) -
Ability of the National Early Warning Score and its respiratory and haemodynamic subcomponents to predict short-term mortality on general wards: a prospective three-centre observational study in Finland
por: Loisa, Eetu, et al.
Publicado: (2022) -
Prehospital characteristics of COVID-19 patients in Helsinki – experience of the first wave of the pandemic
por: Kuisma, Markku, et al.
Publicado: (2021) -
Paediatric prehospital emergencies and restrictions during the COVID-19 pandemic: a population-based study
por: Oulasvirta, Jelena, et al.
Publicado: (2020)