Cargando…
Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations
Microwave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244653/ https://www.ncbi.nlm.nih.gov/pubmed/34211622 http://dx.doi.org/10.1109/jstars.2021.3073286 |
_version_ | 1783715973475336192 |
---|---|
author | Johnson, Joel T. Jezek, Kenneth C. Macelloni, Giovanni Brogioni, Marco Tsang, Leung Dinnat, Emmanuel P. Walker, Jeffrey P. Ye, Nan Misra, Sidharth Piepmeier, Jeffrey R. Bindlish, Rajat LeVine, David M. O’Neill, Peggy E. Kaleschke, Lars Andrews, Mark J. Yardim, Caglar Aksoy, Mustafa Durand, Michael Chen, Chi-Chih Demir, Oguz Bringer, Alexandra Miller, Julie Z. Brown, Shannon T. Kwok, Ron Lee, Tong Kerr, Yann Entekhabi, Dara Peng, Jinzheng Colliander, Andreas Chan, Steven MacGregor, Joseph A. Medley, Brooke DeRoo, Roger Drinkwater, Mark |
author_facet | Johnson, Joel T. Jezek, Kenneth C. Macelloni, Giovanni Brogioni, Marco Tsang, Leung Dinnat, Emmanuel P. Walker, Jeffrey P. Ye, Nan Misra, Sidharth Piepmeier, Jeffrey R. Bindlish, Rajat LeVine, David M. O’Neill, Peggy E. Kaleschke, Lars Andrews, Mark J. Yardim, Caglar Aksoy, Mustafa Durand, Michael Chen, Chi-Chih Demir, Oguz Bringer, Alexandra Miller, Julie Z. Brown, Shannon T. Kwok, Ron Lee, Tong Kerr, Yann Entekhabi, Dara Peng, Jinzheng Colliander, Andreas Chan, Steven MacGregor, Joseph A. Medley, Brooke DeRoo, Roger Drinkwater, Mark |
author_sort | Johnson, Joel T. |
collection | PubMed |
description | Microwave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities. |
format | Online Article Text |
id | pubmed-8244653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-82446532021-06-30 Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations Johnson, Joel T. Jezek, Kenneth C. Macelloni, Giovanni Brogioni, Marco Tsang, Leung Dinnat, Emmanuel P. Walker, Jeffrey P. Ye, Nan Misra, Sidharth Piepmeier, Jeffrey R. Bindlish, Rajat LeVine, David M. O’Neill, Peggy E. Kaleschke, Lars Andrews, Mark J. Yardim, Caglar Aksoy, Mustafa Durand, Michael Chen, Chi-Chih Demir, Oguz Bringer, Alexandra Miller, Julie Z. Brown, Shannon T. Kwok, Ron Lee, Tong Kerr, Yann Entekhabi, Dara Peng, Jinzheng Colliander, Andreas Chan, Steven MacGregor, Joseph A. Medley, Brooke DeRoo, Roger Drinkwater, Mark IEEE J Sel Top Appl Earth Obs Remote Sens Article Microwave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities. 2021-04-14 2021 /pmc/articles/PMC8244653/ /pubmed/34211622 http://dx.doi.org/10.1109/jstars.2021.3073286 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Johnson, Joel T. Jezek, Kenneth C. Macelloni, Giovanni Brogioni, Marco Tsang, Leung Dinnat, Emmanuel P. Walker, Jeffrey P. Ye, Nan Misra, Sidharth Piepmeier, Jeffrey R. Bindlish, Rajat LeVine, David M. O’Neill, Peggy E. Kaleschke, Lars Andrews, Mark J. Yardim, Caglar Aksoy, Mustafa Durand, Michael Chen, Chi-Chih Demir, Oguz Bringer, Alexandra Miller, Julie Z. Brown, Shannon T. Kwok, Ron Lee, Tong Kerr, Yann Entekhabi, Dara Peng, Jinzheng Colliander, Andreas Chan, Steven MacGregor, Joseph A. Medley, Brooke DeRoo, Roger Drinkwater, Mark Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_full | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_fullStr | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_full_unstemmed | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_short | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_sort | microwave radiometry at frequencies from 500 to 1400 mhz: an emerging technology for earth observations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244653/ https://www.ncbi.nlm.nih.gov/pubmed/34211622 http://dx.doi.org/10.1109/jstars.2021.3073286 |
work_keys_str_mv | AT johnsonjoelt microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT jezekkennethc microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT macellonigiovanni microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT brogionimarco microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT tsangleung microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT dinnatemmanuelp microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT walkerjeffreyp microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT yenan microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT misrasidharth microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT piepmeierjeffreyr microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT bindlishrajat microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT levinedavidm microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT oneillpeggye microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT kaleschkelars microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT andrewsmarkj microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT yardimcaglar microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT aksoymustafa microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT durandmichael microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT chenchichih microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT demiroguz microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT bringeralexandra microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT millerjuliez microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT brownshannont microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT kwokron microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT leetong microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT kerryann microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT entekhabidara microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT pengjinzheng microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT collianderandreas microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT chansteven microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT macgregorjosepha microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT medleybrooke microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT derooroger microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT drinkwatermark microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations |