Cargando…

Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations

Microwave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, Joel T., Jezek, Kenneth C., Macelloni, Giovanni, Brogioni, Marco, Tsang, Leung, Dinnat, Emmanuel P., Walker, Jeffrey P., Ye, Nan, Misra, Sidharth, Piepmeier, Jeffrey R., Bindlish, Rajat, LeVine, David M., O’Neill, Peggy E., Kaleschke, Lars, Andrews, Mark J., Yardim, Caglar, Aksoy, Mustafa, Durand, Michael, Chen, Chi-Chih, Demir, Oguz, Bringer, Alexandra, Miller, Julie Z., Brown, Shannon T., Kwok, Ron, Lee, Tong, Kerr, Yann, Entekhabi, Dara, Peng, Jinzheng, Colliander, Andreas, Chan, Steven, MacGregor, Joseph A., Medley, Brooke, DeRoo, Roger, Drinkwater, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244653/
https://www.ncbi.nlm.nih.gov/pubmed/34211622
http://dx.doi.org/10.1109/jstars.2021.3073286
_version_ 1783715973475336192
author Johnson, Joel T.
Jezek, Kenneth C.
Macelloni, Giovanni
Brogioni, Marco
Tsang, Leung
Dinnat, Emmanuel P.
Walker, Jeffrey P.
Ye, Nan
Misra, Sidharth
Piepmeier, Jeffrey R.
Bindlish, Rajat
LeVine, David M.
O’Neill, Peggy E.
Kaleschke, Lars
Andrews, Mark J.
Yardim, Caglar
Aksoy, Mustafa
Durand, Michael
Chen, Chi-Chih
Demir, Oguz
Bringer, Alexandra
Miller, Julie Z.
Brown, Shannon T.
Kwok, Ron
Lee, Tong
Kerr, Yann
Entekhabi, Dara
Peng, Jinzheng
Colliander, Andreas
Chan, Steven
MacGregor, Joseph A.
Medley, Brooke
DeRoo, Roger
Drinkwater, Mark
author_facet Johnson, Joel T.
Jezek, Kenneth C.
Macelloni, Giovanni
Brogioni, Marco
Tsang, Leung
Dinnat, Emmanuel P.
Walker, Jeffrey P.
Ye, Nan
Misra, Sidharth
Piepmeier, Jeffrey R.
Bindlish, Rajat
LeVine, David M.
O’Neill, Peggy E.
Kaleschke, Lars
Andrews, Mark J.
Yardim, Caglar
Aksoy, Mustafa
Durand, Michael
Chen, Chi-Chih
Demir, Oguz
Bringer, Alexandra
Miller, Julie Z.
Brown, Shannon T.
Kwok, Ron
Lee, Tong
Kerr, Yann
Entekhabi, Dara
Peng, Jinzheng
Colliander, Andreas
Chan, Steven
MacGregor, Joseph A.
Medley, Brooke
DeRoo, Roger
Drinkwater, Mark
author_sort Johnson, Joel T.
collection PubMed
description Microwave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities.
format Online
Article
Text
id pubmed-8244653
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-82446532021-06-30 Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations Johnson, Joel T. Jezek, Kenneth C. Macelloni, Giovanni Brogioni, Marco Tsang, Leung Dinnat, Emmanuel P. Walker, Jeffrey P. Ye, Nan Misra, Sidharth Piepmeier, Jeffrey R. Bindlish, Rajat LeVine, David M. O’Neill, Peggy E. Kaleschke, Lars Andrews, Mark J. Yardim, Caglar Aksoy, Mustafa Durand, Michael Chen, Chi-Chih Demir, Oguz Bringer, Alexandra Miller, Julie Z. Brown, Shannon T. Kwok, Ron Lee, Tong Kerr, Yann Entekhabi, Dara Peng, Jinzheng Colliander, Andreas Chan, Steven MacGregor, Joseph A. Medley, Brooke DeRoo, Roger Drinkwater, Mark IEEE J Sel Top Appl Earth Obs Remote Sens Article Microwave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities. 2021-04-14 2021 /pmc/articles/PMC8244653/ /pubmed/34211622 http://dx.doi.org/10.1109/jstars.2021.3073286 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Johnson, Joel T.
Jezek, Kenneth C.
Macelloni, Giovanni
Brogioni, Marco
Tsang, Leung
Dinnat, Emmanuel P.
Walker, Jeffrey P.
Ye, Nan
Misra, Sidharth
Piepmeier, Jeffrey R.
Bindlish, Rajat
LeVine, David M.
O’Neill, Peggy E.
Kaleschke, Lars
Andrews, Mark J.
Yardim, Caglar
Aksoy, Mustafa
Durand, Michael
Chen, Chi-Chih
Demir, Oguz
Bringer, Alexandra
Miller, Julie Z.
Brown, Shannon T.
Kwok, Ron
Lee, Tong
Kerr, Yann
Entekhabi, Dara
Peng, Jinzheng
Colliander, Andreas
Chan, Steven
MacGregor, Joseph A.
Medley, Brooke
DeRoo, Roger
Drinkwater, Mark
Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations
title Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations
title_full Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations
title_fullStr Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations
title_full_unstemmed Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations
title_short Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations
title_sort microwave radiometry at frequencies from 500 to 1400 mhz: an emerging technology for earth observations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244653/
https://www.ncbi.nlm.nih.gov/pubmed/34211622
http://dx.doi.org/10.1109/jstars.2021.3073286
work_keys_str_mv AT johnsonjoelt microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT jezekkennethc microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT macellonigiovanni microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT brogionimarco microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT tsangleung microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT dinnatemmanuelp microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT walkerjeffreyp microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT yenan microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT misrasidharth microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT piepmeierjeffreyr microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT bindlishrajat microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT levinedavidm microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT oneillpeggye microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT kaleschkelars microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT andrewsmarkj microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT yardimcaglar microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT aksoymustafa microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT durandmichael microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT chenchichih microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT demiroguz microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT bringeralexandra microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT millerjuliez microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT brownshannont microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT kwokron microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT leetong microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT kerryann microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT entekhabidara microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT pengjinzheng microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT collianderandreas microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT chansteven microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT macgregorjosepha microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT medleybrooke microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT derooroger microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations
AT drinkwatermark microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations