Cargando…

Remote Surgery Using a Neuroendovascular Intervention Support Robot Equipped with a Sensing Function: Experimental Verification

PURPOSE: Expectations for remote surgery in endovascular treatments are increasing. We conducted the world's first remote catheter surgery experiment using an endovascular treatment-supported robot. We considered the results, examined the issues, and suggested countermeasures for practical use....

Descripción completa

Detalles Bibliográficos
Autores principales: Miyachi, Shigeru, Nagano, Yoshitaka, Kawaguchi, Reo, Ohshima, Tomotaka, Tadauchi, Hiroki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244710/
https://www.ncbi.nlm.nih.gov/pubmed/34268165
http://dx.doi.org/10.4103/ajns.AJNS_77_21
Descripción
Sumario:PURPOSE: Expectations for remote surgery in endovascular treatments are increasing. We conducted the world's first remote catheter surgery experiment using an endovascular treatment-supported robot. We considered the results, examined the issues, and suggested countermeasures for practical use. METHODS: The slave robot in the angiography room is an original machine that enables sensing feedback by using an originally developed insertion force-measuring device, which detects the pressure stress on the vessel wall and alerts the operator using an audible scale. The master side was set in a separate room. They were connected via HTTP communication using local area network system. The surgeon operated by looking at a personal computer monitor that shared an angiography monitor. The slave robot catheterized and inserted a coil for an aneurysm in the silicon blood vessel model in the angiography room. RESULTS: Our robot responded to the surgeon's operations promptly and to the joystick's swift movements quite accurately. The surgeon could control the stress to the model vessels using various actions, because the operator could hear the sound from the insertion force. However, the robot required a time gradient to reach a stable advanced speed at the time of the initial movement, and experienced a slight time lag. CONCLUSION: Our remote operation appeared to be sufficiently feasible to perform the surgery safely. This system seems extremely promising for preventing viral infection and radiation exposure to medical staff. It will also enable medical professionals to operate in remote areas and create a ubiquitous medical environment.