Cargando…
Joint representation of color and form in convolutional neural networks: A stimulus-rich network perspective
To interact with real-world objects, any effective visual system must jointly code the unique features defining each object. Despite decades of neuroscience research, we still lack a firm grasp on how the primate brain binds visual features. Here we apply a novel network-based stimulus-rich represen...
Autores principales: | Taylor, JohnMark, Xu, Yaoda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244861/ https://www.ncbi.nlm.nih.gov/pubmed/34191815 http://dx.doi.org/10.1371/journal.pone.0253442 |
Ejemplares similares
-
Representation of color, form, and their conjunction across the human
ventral visual pathway
por: Taylor, JohnMark, et al.
Publicado: (2022) -
Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Xu, Yaoda, et al.
Publicado: (2021) -
The contribution of object identity and configuration to scene representation in convolutional neural networks
por: Tang, Kevin, et al.
Publicado: (2022) -
Publisher Correction: Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Xu, Yaoda, et al.
Publicado: (2021) -
Representing Multiple Visual Objects in the Human Brain and Convolutional Neural Networks
por: Mocz, Viola, et al.
Publicado: (2023)