Cargando…
Prediction of preterm birth in nulliparous women using logistic regression and machine learning
OBJECTIVE: To predict preterm birth in nulliparous women using logistic regression and machine learning. DESIGN: Population-based retrospective cohort. PARTICIPANTS: Nulliparous women (N = 112,963) with a singleton gestation who gave birth between 20–42 weeks gestation in Ontario hospitals from Apri...
Autores principales: | Arabi Belaghi, Reza, Beyene, Joseph, McDonald, Sarah D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244906/ https://www.ncbi.nlm.nih.gov/pubmed/34191801 http://dx.doi.org/10.1371/journal.pone.0252025 |
Ejemplares similares
-
Risk Factors for Preterm Birth in an International Prospective Cohort of Nulliparous Women
por: Dekker, Gustaaf Albert, et al.
Publicado: (2012) -
Comparison of Multivariable Logistic Regression and Machine Learning Models for Predicting Bronchopulmonary Dysplasia or Death in Very Preterm Infants
por: Khurshid, Faiza, et al.
Publicado: (2021) -
The Relationships of Health Behaviour and Psychological Characteristics with Spontaneous Preterm Birth in Nulliparous Women
por: Baron, Ruth, et al.
Publicado: (2016) -
Logistic Regression for Machine Learning in Process Tomography
por: Rymarczyk, Tomasz, et al.
Publicado: (2019) -
Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods
por: Amini, Payam, et al.
Publicado: (2017)