Cargando…
DeepNavNet: Automated Landmark Localization for Neuronavigation
Functional neurosurgery requires neuroimaging technologies that enable precise navigation to targeted structures. Insufficient image resolution of deep brain structures necessitates alignment to a brain atlas to indirectly locate targets within preoperative magnetic resonance imaging (MRI) scans. In...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245762/ https://www.ncbi.nlm.nih.gov/pubmed/34220429 http://dx.doi.org/10.3389/fnins.2021.670287 |
_version_ | 1783716179318145024 |
---|---|
author | Edwards, Christine A. Goyal, Abhinav Rusheen, Aaron E. Kouzani, Abbas Z. Lee, Kendall H. |
author_facet | Edwards, Christine A. Goyal, Abhinav Rusheen, Aaron E. Kouzani, Abbas Z. Lee, Kendall H. |
author_sort | Edwards, Christine A. |
collection | PubMed |
description | Functional neurosurgery requires neuroimaging technologies that enable precise navigation to targeted structures. Insufficient image resolution of deep brain structures necessitates alignment to a brain atlas to indirectly locate targets within preoperative magnetic resonance imaging (MRI) scans. Indirect targeting through atlas-image registration is innately imprecise, increases preoperative planning time, and requires manual identification of anterior and posterior commissure (AC and PC) reference landmarks which is subject to human error. As such, we created a deep learning-based pipeline that consistently and automatically locates, with submillimeter accuracy, the AC and PC anatomical landmarks within MRI volumes without the need for an atlas. Our novel deep learning pipeline (DeepNavNet) regresses from MRI scans to heatmap volumes centered on AC and PC anatomical landmarks to extract their three-dimensional coordinates with submillimeter accuracy. We collated and manually labeled the location of AC and PC points in 1128 publicly available MRI volumes used for training, validation, and inference experiments. Instantiations of our DeepNavNet architecture, as well as a baseline model for reference, were evaluated based on the average 3D localization errors for the AC and PC points across 311 MRI volumes. Our DeepNavNet model significantly outperformed a baseline and achieved a mean 3D localization error of 0.79 ± 0.33 mm and 0.78 ± 0.33 mm between the ground truth and the detected AC and PC points, respectively. In conclusion, the DeepNavNet model pipeline provides submillimeter accuracy for localizing AC and PC anatomical landmarks in MRI volumes, enabling improved surgical efficiency and accuracy. |
format | Online Article Text |
id | pubmed-8245762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82457622021-07-02 DeepNavNet: Automated Landmark Localization for Neuronavigation Edwards, Christine A. Goyal, Abhinav Rusheen, Aaron E. Kouzani, Abbas Z. Lee, Kendall H. Front Neurosci Neuroscience Functional neurosurgery requires neuroimaging technologies that enable precise navigation to targeted structures. Insufficient image resolution of deep brain structures necessitates alignment to a brain atlas to indirectly locate targets within preoperative magnetic resonance imaging (MRI) scans. Indirect targeting through atlas-image registration is innately imprecise, increases preoperative planning time, and requires manual identification of anterior and posterior commissure (AC and PC) reference landmarks which is subject to human error. As such, we created a deep learning-based pipeline that consistently and automatically locates, with submillimeter accuracy, the AC and PC anatomical landmarks within MRI volumes without the need for an atlas. Our novel deep learning pipeline (DeepNavNet) regresses from MRI scans to heatmap volumes centered on AC and PC anatomical landmarks to extract their three-dimensional coordinates with submillimeter accuracy. We collated and manually labeled the location of AC and PC points in 1128 publicly available MRI volumes used for training, validation, and inference experiments. Instantiations of our DeepNavNet architecture, as well as a baseline model for reference, were evaluated based on the average 3D localization errors for the AC and PC points across 311 MRI volumes. Our DeepNavNet model significantly outperformed a baseline and achieved a mean 3D localization error of 0.79 ± 0.33 mm and 0.78 ± 0.33 mm between the ground truth and the detected AC and PC points, respectively. In conclusion, the DeepNavNet model pipeline provides submillimeter accuracy for localizing AC and PC anatomical landmarks in MRI volumes, enabling improved surgical efficiency and accuracy. Frontiers Media S.A. 2021-06-17 /pmc/articles/PMC8245762/ /pubmed/34220429 http://dx.doi.org/10.3389/fnins.2021.670287 Text en Copyright © 2021 Edwards, Goyal, Rusheen, Kouzani and Lee. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Edwards, Christine A. Goyal, Abhinav Rusheen, Aaron E. Kouzani, Abbas Z. Lee, Kendall H. DeepNavNet: Automated Landmark Localization for Neuronavigation |
title | DeepNavNet: Automated Landmark Localization for Neuronavigation |
title_full | DeepNavNet: Automated Landmark Localization for Neuronavigation |
title_fullStr | DeepNavNet: Automated Landmark Localization for Neuronavigation |
title_full_unstemmed | DeepNavNet: Automated Landmark Localization for Neuronavigation |
title_short | DeepNavNet: Automated Landmark Localization for Neuronavigation |
title_sort | deepnavnet: automated landmark localization for neuronavigation |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245762/ https://www.ncbi.nlm.nih.gov/pubmed/34220429 http://dx.doi.org/10.3389/fnins.2021.670287 |
work_keys_str_mv | AT edwardschristinea deepnavnetautomatedlandmarklocalizationforneuronavigation AT goyalabhinav deepnavnetautomatedlandmarklocalizationforneuronavigation AT rusheenaarone deepnavnetautomatedlandmarklocalizationforneuronavigation AT kouzaniabbasz deepnavnetautomatedlandmarklocalizationforneuronavigation AT leekendallh deepnavnetautomatedlandmarklocalizationforneuronavigation |