Cargando…
BowSaw: Inferring Higher-Order Trait Interactions Associated With Complex Biological Phenotypes
Machine learning is helping the interpretation of biological complexity by enabling the inference and classification of cellular, organismal and ecological phenotypes based on large datasets, e.g., from genomic, transcriptomic and metagenomic analyses. A number of available algorithms can help searc...
Autores principales: | DiMucci, Demetrius, Kon, Mark, Segrè, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245782/ https://www.ncbi.nlm.nih.gov/pubmed/34222331 http://dx.doi.org/10.3389/fmolb.2021.663532 |
Ejemplares similares
-
Machine Learning Reveals Missing Edges and Putative Interaction Mechanisms in Microbial Ecosystem Networks
por: DiMucci, Demetrius, et al.
Publicado: (2018) -
Predicting higher-order mutational effects in an RNA enzyme by machine learning of high-throughput experimental data
por: Beck, James D., et al.
Publicado: (2022) -
Synthetic Artificial Long Non-coding RNA Shows Higher Efficiency in Specific Malignant Phenotype Inhibition Compared to the CRISPR/Cas Systems
por: Yao, Lin, et al.
Publicado: (2020) -
Computational approaches for inferring the functions of intrinsically disordered proteins
por: Varadi, Mihaly, et al.
Publicado: (2015) -
Inferring Retinal Degeneration-Related Genes Based on Xgboost
por: Xia, Yujie, et al.
Publicado: (2022)