Cargando…
Using machine learning methods to predict nonhome discharge after elective total shoulder arthroplasty
BACKGROUND: Machine learning has shown potential in accurately predicting outcomes after orthopedic surgery, thereby allowing for improved patient selection, risk stratification, and preoperative planning. This study sought to develop machine learning models to predict nonhome discharge after total...
Autores principales: | Lopez, Cesar D., Constant, Michael, Anderson, Matthew J.J., Confino, Jamie E., Heffernan, John T., Jobin, Charles M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245980/ https://www.ncbi.nlm.nih.gov/pubmed/34223417 http://dx.doi.org/10.1016/j.jseint.2021.02.011 |
Ejemplares similares
-
Readmission, reoperation, and nonhome discharge rates in patients receiving surgical treatment for proximal humerus fractures
por: Ling, Kenny, et al.
Publicado: (2022) -
Trends in total shoulder arthroplasty from 2005 to 2018: lower complications rates and shorter lengths of stay despite patients with more comorbidities
por: Bixby, Elise C., et al.
Publicado: (2020) -
Association between shoulder coracoacromial arch morphology and anterior instability of the shoulder
por: Lopez, Cesar D., et al.
Publicado: (2020) -
Analysis of patient's willingness and concerns for discharge following shoulder arthroplasty
por: Magone, Kevin M., et al.
Publicado: (2022) -
Rate of improvement in shoulder strength after anatomic and reverse total shoulder arthroplasty
por: Hao, Kevin A., et al.
Publicado: (2021)