Cargando…
Linagliptin, A Xanthine-Based Dipeptidyl Peptidase-4 Inhibitor, Ameliorates Experimental Autoimmune Myocarditis
This study sought to show the mechanism of how to ameliorate experimental autoimmune myocarditis (EAM) by administering dipeptidyl peptidase (DPP)-4 inhibitor linagliptin. The number of RAR-related orphan nuclear receptor gamma–positive Th17 cells infiltrated to the EAM myocardium was significantly...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246030/ https://www.ncbi.nlm.nih.gov/pubmed/34222724 http://dx.doi.org/10.1016/j.jacbts.2021.04.006 |
Sumario: | This study sought to show the mechanism of how to ameliorate experimental autoimmune myocarditis (EAM) by administering dipeptidyl peptidase (DPP)-4 inhibitor linagliptin. The number of RAR-related orphan nuclear receptor gamma–positive Th17 cells infiltrated to the EAM myocardium was significantly attenuated by linagliptin treatment. Tandem mass spectrometry–based analysis demonstrated that DPP-4 binds to cathepsin G in EAM hearts, thereby protecting cathepsin G activity through inhibiting SerpinA3N activity. Linagliptin suppresses oxidative stress in EAM hearts as well. Thus, we found that DPP-4 plays a detrimental role in the progression of EAM by interacting with cathepsin G, which, in turn, suppresses SerpinA3N activity. |
---|