Cargando…
Decision-support for treatment with (177)Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters
BACKGROUND: Treatment with radiolabeled ligands to prostate-specific membrane antigen (PSMA) is gaining importance in the treatment of patients with advanced prostate carcinoma. Previous imaging with positron emission tomography/computed tomography (PET/CT) is mandatory. The aim of this study was to...
Autores principales: | Moazemi, Sobhan, Erle, Annette, Khurshid, Zain, Lütje, Susanne, Muders, Michael, Essler, Markus, Schultz, Thomas, Bundschuh, Ralph A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246232/ https://www.ncbi.nlm.nih.gov/pubmed/34268431 http://dx.doi.org/10.21037/atm-20-6446 |
Ejemplares similares
-
Estimating the Potential of Radiomics Features and Radiomics Signature from Pretherapeutic PSMA-PET-CT Scans and Clinical Data for Prediction of Overall Survival When Treated with (177)Lu-PSMA
por: Moazemi, Sobhan, et al.
Publicado: (2021) -
Machine Learning Facilitates Hotspot Classification in PSMA-PET/CT with Nuclear Medicine Specialist Accuracy
por: Moazemi, Sobhan, et al.
Publicado: (2020) -
Evaluating a Machine Learning Tool for the Classification of Pathological Uptake in Whole-Body PSMA-PET-CT Scans
por: Erle, Annette, et al.
Publicado: (2021) -
Matched-pair analysis of [(177)Lu]Lu-PSMA I&T and [(177)Lu]Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer
por: Hartrampf, Philipp E., et al.
Publicado: (2022) -
Role of textural heterogeneity parameters in patient selection for 177Lu-PSMA therapy via response prediction
por: Khurshid, Zain, et al.
Publicado: (2018)