Cargando…
Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study
BACKGROUND: Traditional scoring systems for patients’ outcome prediction in intensive care units such as Oxygenation Saturation Index (OSI) and Oxygenation Index (OI) may not reliably predict the clinical prognosis of patients with acute respiratory distress syndrome (ARDS). Thus, none of them have...
Autores principales: | Huang, Bingsheng, Liang, Dong, Zou, Rushi, Yu, Xiaxia, Dan, Guo, Huang, Haofan, Liu, Heng, Liu, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246239/ https://www.ncbi.nlm.nih.gov/pubmed/34268407 http://dx.doi.org/10.21037/atm-20-6624 |
Ejemplares similares
-
A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit
por: Zhuang, Jinhu, et al.
Publicado: (2023) -
Development and validation of a risk stratification model for predicting the mortality of acute kidney injury in critical care patients
por: Huang, Haofan, et al.
Publicado: (2021) -
Open-source algorithm and software for computed tomography-based virtual pancreatoscopy and other applications
por: Huang, Haofan, et al.
Publicado: (2022) -
A Simple-to-Use Web-Based Calculator for Survival Prediction in Acute Respiratory Distress Syndrome
por: Liu, Yong, et al.
Publicado: (2021) -
Development and validation of a clinical risk model to predict the hospital mortality in ventilated patients with acute respiratory distress syndrome: a population-based study
por: Ye, Weiyan, et al.
Publicado: (2022)