Cargando…
Growing and aging of hematopoietic stem cells
In the hematopoietic system, a small number of stem cells produce a progeny of several distinct lineages. During ontogeny, they arise in the aorta-gonad-mesonephros region of the embryo and the placenta, afterwards colonise the liver and finally the bone marrow. After this fetal phase of rapid expan...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246248/ https://www.ncbi.nlm.nih.gov/pubmed/34249229 http://dx.doi.org/10.4252/wjsc.v13.i6.594 |
Sumario: | In the hematopoietic system, a small number of stem cells produce a progeny of several distinct lineages. During ontogeny, they arise in the aorta-gonad-mesonephros region of the embryo and the placenta, afterwards colonise the liver and finally the bone marrow. After this fetal phase of rapid expansion, the number of hematopoietic stem cells continues to grow, in order to sustain the increasing blood volume of the developing newborn, and eventually reaches a steady-state. The kinetics of this growth are mirrored by the rates of telomere shortening in leukocytes. During adulthood, hematopoietic stem cells undergo a very small number of cell divisions. Nonetheless, they are subjected to aging, eventually reducing their potential to produce differentiated progeny. The causal relationships between telomere shortening, DNA damage, epigenetic changes, and aging have still to be elucidated. |
---|