Cargando…
A comparative experimental study of distributed storage engines for big spatial data processing using GeoSpark
With increasing numbers of GPS-equipped mobile devices, we are witnessing a deluge of spatial information that needs to be effectively and efficiently managed. Even though there are several distributed spatial data processing systems such as GeoSpark (Apache Sedona), the effects of underlying storag...
Autores principales: | Shin, Hansub, Lee, Kisung, Kwon, Hyuk-Yoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246422/ https://www.ncbi.nlm.nih.gov/pubmed/34226796 http://dx.doi.org/10.1007/s11227-021-03946-7 |
Ejemplares similares
-
Data where you want it: geo-distribution of big data and analytics
por: Dunning, Ted, et al.
Publicado: (2017) -
LocationSpark: In-memory Distributed Spatial Query Processing and Optimization
por: Tang, Mingjie, et al.
Publicado: (2020) -
Big data processing with Apache Spark: efficiently tackle large datasets and big data analysis with Spark and Python
por: Franco Galeano, Manuel Ignacio
Publicado: (2018) -
Scala and Spark for big data analytics: tame big data with Scala and Apache Spark!
por: Karim, Md Rezaul
Publicado: (2017) -
Design and Development of a Big Data Platform for Disease Burden Based on the Spark Engine
por: Li, Chengcheng, et al.
Publicado: (2023)