Cargando…

Investigation of Adsorption Kinetics and the Isotherm Mechanism of Manganese by Modified Diatomite

[Image: see text] Natural diatomite modified by acetic acid (C-D) and sodium hydroxide (Na-D) for adsorbing manganese (Mn) was studied. The construction and morphology of the modified diatomite were then characterized by different efficient and accurate detection methods (Fourier transform infrared,...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Limei, Li, Zhixian, Li, Weiya, Chen, Zhang, Chen, Guoliang, Yang, Wenting, Zhang, Xinhui, Liu, Xiling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246448/
https://www.ncbi.nlm.nih.gov/pubmed/34235311
http://dx.doi.org/10.1021/acsomega.1c01204
Descripción
Sumario:[Image: see text] Natural diatomite modified by acetic acid (C-D) and sodium hydroxide (Na-D) for adsorbing manganese (Mn) was studied. The construction and morphology of the modified diatomite were then characterized by different efficient and accurate detection methods (Fourier transform infrared, scanning electron microscopy, and Brunauer–Emmett–Teller), and it was proved that C-D and Na-D increased the surface area and void volume compared to natural diatomite, and the modification of diatomite with acetic acid and alkali also significantly changed the structure of the functional groups of diatomite, especially in Na-D. Therefore, the adsorption rate of Mn by C-D and Na-D was higher than that of natural diatomite. The optimum conditions of Mn adsorption for C-D and Na-D were pH 5.0, 40 °C, 30 min and pH 5.0, 40 °C, 120 min, respectively, and this was best illustrated by pseudo-second-order kinetics. The Mn adsorption isotherm models showed that Mn adsorption on C-D and Na-D was stable, and the Langmuir adsorption isotherm model fitted adsorption processes of natural diatomite, C-D, and Na-D well as their correlation coefficients were 0.931, 0.940, and 0.991, respectively. These results suggested that modified diatomite with acetic acid and sodium hydroxide significantly increased the adsorption rate of Mn, which had an important application prospect for the remediation of Mn pollution in soil and water.