Cargando…
Detection Limits of Trinitrotoluene and Ammonium Nitrate in Soil by Raman Spectroscopy
[Image: see text] The detection limit of 2,4,6-trinitrotoluene (TNT) and ammonium nitrate (AN) in mixtures of Ottawa sand (OS) was studied using a Raman microscope applying conventional calibration curves, Pearson correlation coefficients, and two-sample t-tests. By constructing calibration curves,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246453/ https://www.ncbi.nlm.nih.gov/pubmed/34235302 http://dx.doi.org/10.1021/acsomega.1c00721 |
Sumario: | [Image: see text] The detection limit of 2,4,6-trinitrotoluene (TNT) and ammonium nitrate (AN) in mixtures of Ottawa sand (OS) was studied using a Raman microscope applying conventional calibration curves, Pearson correlation coefficients, and two-sample t-tests. By constructing calibration curves, the conventionally defined detection limits were estimated to be 1.9 ± 0.4% by mass in OS and 1.9 ± 0.3% by mass in OS for TNT and AN. Both TNT and AN were detectable in concentrations as low as 1% by mass when Pearson correlation coefficients were used to compare averaged spectra to a library containing spectra from a range of soil types. AN was detectable in concentrations as low as 1% by mass when a test sample of spectra was compared to the same library using two-sample t-tests. TNT was not detectable at a concentration of 1% by mass when using two-sample t-tests. |
---|