Cargando…

South West and North Central Nigeria: Assessment of cassava mosaic disease and field status of African cassava mosaic virus and East African cassava mosaic virus

Cassava mosaic disease (CMD), caused by cassava mosaic begomoviruses (CMBs), is a major threat to cassava production in Nigeria. The predominant CMBs in Nigeria are African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV) and East African cassava mosaic Cameroon virus (EACMCV),...

Descripción completa

Detalles Bibliográficos
Autores principales: Eni, Angela O., Efekemo, Oghenevwairhe P., Onile‐ere, Olabode A., Pita, Justin S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246719/
https://www.ncbi.nlm.nih.gov/pubmed/34219746
http://dx.doi.org/10.1111/aab.12647
Descripción
Sumario:Cassava mosaic disease (CMD), caused by cassava mosaic begomoviruses (CMBs), is a major threat to cassava production in Nigeria. The predominant CMBs in Nigeria are African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV) and East African cassava mosaic Cameroon virus (EACMCV), which are transmitted through infected stem cuttings and whitefly vectors. This study was conducted in 2015 and 2017 to assess the epidemiology of CMD and the current distribution of CMBs in cassava farms in South West (SW) and North Central (NC) Nigeria. A survey of cassava farms was undertaken, and samples representative of disease symptoms were collected and assessed using molecular techniques. A total of 184 and 328 cassava farms were sampled in 2015 and 2017, respectively. CMD incidence for both regions surveyed was 43.80 and 12.25% in 2015 and 2017, respectively. Fields in SW recorded a higher incidence rate in 2015 (SW: 45.11%, NC: 42.47%), while the reverse occurred in 2017 (SW: 10.90%, NC: 14.01%). Overall, the CMD incidence in Benue State (NC) was significantly higher than other locations surveyed in both years. CMD symptom severity and mean whitefly population were higher in SW Nigeria in the two survey years. ACMV was widespread across both zones, occurring in 79.1% (453/613) and 54.8% (386/704) of cassava leaf samples analysed in 2015 and 2017, respectively. EACMV was detected in only 6.0% (37/613) and 4.7% (33/704) of all cassava leaf samples analysed in 2015 and 2017, respectively. Overall, a higher proportion of infected samples were found in NC in both 2015 (NC: 85.2%, SW: 75.4%) and 2017 (NC: 73.6%, SW: 45.2%). Detection using strain‐specific primers revealed that 97% of EACMV positive samples were indeed infected by the EACMCV strain of the virus. As previously reported, samples with mixed infections showed a higher symptom severity than samples with single ACMV or EACMV infections. This study provides an update to the distribution of CMBs in SW and NC Nigeria and will be useful in development of monitoring and management strategies for the disease in both regions.