Cargando…
Machine Learning Predictions of pH in the Glacial Aquifer System, Northern USA
A boosted regression tree model was developed to predict pH conditions in three dimensions throughout the glacial aquifer system of the contiguous United States using pH measurements in samples from 18,386 wells and predictor variables that represent aspects of the hydrogeologic setting. Model resul...
Autores principales: | Stackelberg, Paul E., Belitz, Kenneth, Brown, Craig J., Erickson, Melinda L., Elliott, Sarah M., Kauffman, Leon J., Ransom, Katherine M., Reddy, James E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246943/ https://www.ncbi.nlm.nih.gov/pubmed/33314084 http://dx.doi.org/10.1111/gwat.13063 |
Ejemplares similares
-
Mapped Predictions of Manganese and Arsenic in an Alluvial Aquifer Using Boosted Regression Trees
por: Knierim, Katherine J., et al.
Publicado: (2022) -
Widespread and increased drilling of wells into fossil aquifers in the USA
por: GebreEgziabher, Merhawi, et al.
Publicado: (2022) -
Microbial Methylation of Iodide in Unconfined Aquifer Sediments at the Hanford Site, USA
por: Bagwell, Christopher E., et al.
Publicado: (2019) -
Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley
por: Podgorski, Joel E., et al.
Publicado: (2017) -
Graptolites from glacial erratics of the Laerheide area, northern Germany
por: Maletz, Jörg, et al.
Publicado: (2017)