Cargando…
Patient similarity analytics for explainable clinical risk prediction
BACKGROUND: Clinical risk prediction models (CRPMs) use patient characteristics to estimate the probability of having or developing a particular disease and/or outcome. While CRPMs are gaining in popularity, they have yet to be widely adopted in clinical practice. The lack of explainability and inte...
Autores principales: | Fang, Hao Sen Andrew, Tan, Ngiap Chuan, Tan, Wei Ying, Oei, Ronald Wihal, Lee, Mong Li, Hsu, Wynne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247104/ https://www.ncbi.nlm.nih.gov/pubmed/34210320 http://dx.doi.org/10.1186/s12911-021-01566-y |
Ejemplares similares
-
Using Domain Knowledge and Data-Driven Insights for Patient Similarity Analytics
por: Oei, Ronald Wihal, et al.
Publicado: (2021) -
Diabetes medication recommendation system using patient similarity analytics
por: Tan, Wei Ying, et al.
Publicado: (2022) -
Using similar patients to predict complication in patients with diabetes, hypertension, and lipid disorder: a domain knowledge-infused convolutional neural network approach
por: Oei, Ronald Wihal, et al.
Publicado: (2022) -
The effect of oral diabetes medications on glycated haemoglobin (HbA1c) in Asians in primary care: a retrospective cohort real-world data study
por: Fang, Hao Sen Andrew, et al.
Publicado: (2022) -
LDL-cholesterol change and goal attainment following statin intensity titration among Asians in primary care: a retrospective cohort study
por: Fang, Hao Sen Andrew, et al.
Publicado: (2021)