Cargando…
Unsupervised PM(2.5) anomalies in China induced by the COVID-19 epidemic
To stop the spread of COVID-19 (2019 novel coronavirus), China placed lockdown on social activities across China since mid-January 2020. The government actions significantly affected emissions of atmospheric pollutants and unintentionally created a nationwide emission reduction scenario. In order to...
Autores principales: | Zhao, Yuan, Wang, Li, Huang, Tao, Tao, Shu, Liu, Junfeng, Gao, Hong, Luo, Jinmu, Huang, Yufei, Liu, Xinrui, Chen, Kaijie, Wang, Linfei, Ma, Jianmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247192/ https://www.ncbi.nlm.nih.gov/pubmed/34237535 http://dx.doi.org/10.1016/j.scitotenv.2021.148807 |
Ejemplares similares
-
The footprint of dioxins in globally traded pork meat
por: Chen, Kaijie, et al.
Publicado: (2021) -
Urbanization-induced population migration has reduced ambient PM(2.5) concentrations in China
por: Shen, Huizhong, et al.
Publicado: (2017) -
Globalization and pollution: tele-connecting local primary PM(2.5) emissions to global consumption
por: Meng, Jing, et al.
Publicado: (2016) -
Impact of quarantine measures on chemical compositions of PM(2.5) during the COVID-19 epidemic in Shanghai, China
por: Chen, Hui, et al.
Publicado: (2020) -
An Unsupervised Deep Hyperspectral Anomaly Detector
por: Ma, Ning, et al.
Publicado: (2018)