Cargando…

Serendipita bescii promotes winter wheat growth and modulates the host root transcriptome under phosphorus and nitrogen starvation

Serendipita vermifera ssp. bescii, hereafter referred to as S. bescii, is a root‐associated fungus that promotes plant growth in both its native switchgrass host and a variety of monocots and dicots. Winter wheat (Triticum aestivum L.), a dual‐purpose crop, used for both forage and grain production,...

Descripción completa

Detalles Bibliográficos
Autores principales: Ray, Prasun, Guo, Yingqing, Chi, Myoung‐Hwan, Krom, Nick, Saha, Malay C., Craven, Kelly D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247352/
https://www.ncbi.nlm.nih.gov/pubmed/32959463
http://dx.doi.org/10.1111/1462-2920.15242
Descripción
Sumario:Serendipita vermifera ssp. bescii, hereafter referred to as S. bescii, is a root‐associated fungus that promotes plant growth in both its native switchgrass host and a variety of monocots and dicots. Winter wheat (Triticum aestivum L.), a dual‐purpose crop, used for both forage and grain production, significantly contributes to the agricultural economies of the Southern Great Plains, USA. In this study, we investigated the influence of S. bescii on growth and transcriptome regulation of nitrogen (N) and phosphorus (P) metabolism in winter wheat. Serendipita bescii significantly improved lateral root growth and forage biomass under a limited N or P regime. Further, S. bescii activated sets of host genes regulating N and P starvation responses. These genes include, root‐specific auxin transport, strigolactone and gibberellin biosynthesis, degradation of phospholipids and biosynthesis of glycerolipid, downregulation of ammonium transport and nitrate assimilation, restriction of protein degradation by autophagy and subsequent N remobilization. All these genes are hypothesized to regulate acquisition, assimilation and remobilization of N and P. Based on transcriptional level gene regulation and physiological responses to N or P limitation, we suggest S. bescii plays a critical role in modulating stress imposed by limitation of these two critical nutrients in winter wheat.