Cargando…
Review of Machine Learning Methods for the Prediction and Reconstruction of Metabolic Pathways
Prediction and reconstruction of metabolic pathways play significant roles in many fields such as genetic engineering, metabolic engineering, drug discovery, and are becoming the most active research topics in synthetic biology. With the increase of related data and with the development of machine l...
Autores principales: | Shah, Hayat Ali, Liu, Juan, Yang, Zhihui, Feng, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247443/ https://www.ncbi.nlm.nih.gov/pubmed/34222327 http://dx.doi.org/10.3389/fmolb.2021.634141 |
Ejemplares similares
-
Interpretable machine learning methods for predictions in systems biology from omics data
por: Sidak, David, et al.
Publicado: (2022) -
Editorial: Machine learning, epistasis, and protein engineering: From sequence-structure-function relationships to regulation of metabolic pathways
por: Cadet, Frederic, et al.
Publicado: (2022) -
Identifying Methylation Signatures and Rules for COVID-19 With Machine Learning Methods
por: Li, Zhandong, et al.
Publicado: (2022) -
Systematic Comparisons for Composition Profiles, Taxonomic Levels, and Machine Learning Methods for Microbiome-Based Disease Prediction
por: Song, Kuncheng, et al.
Publicado: (2020) -
Identification of COVID-19-Specific Immune Markers Using a Machine Learning Method
por: Li, Hao, et al.
Publicado: (2022)