Cargando…
Application of Visible/Infrared Spectroscopy and Hyperspectral Imaging With Machine Learning Techniques for Identifying Food Varieties and Geographical Origins
Food quality and safety are strongly related to human health. Food quality varies with variety and geographical origin, and food fraud is becoming a threat to domestic and global markets. Visible/infrared spectroscopy and hyperspectral imaging techniques, as rapid and non-destructive analytical meth...
Autores principales: | Feng, Lei, Wu, Baohua, Zhu, Susu, He, Yong, Zhang, Chu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247466/ https://www.ncbi.nlm.nih.gov/pubmed/34222304 http://dx.doi.org/10.3389/fnut.2021.680357 |
Ejemplares similares
-
Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging
por: Feng, Lei, et al.
Publicado: (2018) -
Determination of the Geographical Origin of Coffee Beans Using Terahertz Spectroscopy Combined With Machine Learning Methods
por: Yang, Si, et al.
Publicado: (2021) -
Near-Infrared Hyperspectral Imaging Combined with Deep Learning to Identify Cotton Seed Varieties
por: Zhu, Susu, et al.
Publicado: (2019) -
Nutrient content prediction and geographical origin identification of red raspberry fruits by combining hyperspectral imaging with chemometrics
por: Wang, Youyou, et al.
Publicado: (2022) -
Non-Destructive and Rapid Variety Discrimination and Visualization of Single Grape Seed Using Near-Infrared Hyperspectral Imaging Technique and Multivariate Analysis
por: Zhao, Yiying, et al.
Publicado: (2018)