Cargando…
A Bayesian Deep Neural Network for Safe Visual Servoing in Human–Robot Interaction
Safety is an important issue in human–robot interaction (HRI) applications. Various research works have focused on different levels of safety in HRI. If a human/obstacle is detected, a repulsive action can be taken to avoid the collision. Common repulsive actions include distance methods, potential...
Autores principales: | Shi, Lei, Copot, Cosmin, Vanlanduit, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247479/ https://www.ncbi.nlm.nih.gov/pubmed/34222355 http://dx.doi.org/10.3389/frobt.2021.687031 |
Ejemplares similares
-
Gaze Gesture Recognition by Graph Convolutional Networks
por: Shi, Lei, et al.
Publicado: (2021) -
Modelling and Control of a 2-DOF Robot Arm with Elastic Joints for Safe Human-Robot Interaction
por: Tuan, Hua Minh, et al.
Publicado: (2021) -
A Statistical Model to Determine Biomechanical Limits for Physically Safe Interactions With Collaborative Robots
por: Behrens , R., et al.
Publicado: (2022) -
Koopman Operator–Based Knowledge-Guided Reinforcement Learning for Safe Human–Robot Interaction
por: Sinha, Anirban, et al.
Publicado: (2022) -
Using Deep Neural Networks to Improve Contact Wrench Estimation of Serial Robotic Manipulators in Static Tasks
por: Osburg, Jonas, et al.
Publicado: (2022)