Cargando…
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods su...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247631/ https://www.ncbi.nlm.nih.gov/pubmed/34222682 http://dx.doi.org/10.1016/j.cels.2020.04.003 |
_version_ | 1783716556813893632 |
---|---|
author | Hollandi, Reka Szkalisity, Abel Toth, Timea Tasnadi, Ervin Molnar, Csaba Mathe, Botond Grexa, Istvan Molnar, Jozsef Balind, Arpad Gorbe, Mate Kovacs, Maria Migh, Ede Goodman, Allen Balassa, Tamas Koos, Krisztian Wang, Wenyu Caicedo, Juan Carlos Bara, Norbert Kovacs, Ferenc Paavolainen, Lassi Danka, Tivadar Kriston, Andras Carpenter, Anne Elizabeth Smith, Kevin Horvath, Peter |
author_facet | Hollandi, Reka Szkalisity, Abel Toth, Timea Tasnadi, Ervin Molnar, Csaba Mathe, Botond Grexa, Istvan Molnar, Jozsef Balind, Arpad Gorbe, Mate Kovacs, Maria Migh, Ede Goodman, Allen Balassa, Tamas Koos, Krisztian Wang, Wenyu Caicedo, Juan Carlos Bara, Norbert Kovacs, Ferenc Paavolainen, Lassi Danka, Tivadar Kriston, Andras Carpenter, Anne Elizabeth Smith, Kevin Horvath, Peter |
author_sort | Hollandi, Reka |
collection | PubMed |
description | Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods submitted to the 2018 Data Science Bowl on images representing a variety of realistic conditions, some of which were not represented in the training data. The key to our approach is that during training nucleAIzer automatically adapts its nucleus-style model to unseen and unlabeled data using image style transfer to automatically generate augmented training samples. This allows the model to recognize nuclei in new and different experiments efficiently without requiring expert annotations, making deep learning for nucleus segmentation fairly simple and labor free for most biological light microscopy experiments. It can also be used online, integrated into CellProfiler and freely downloaded at www.nucleaizer.org. A record of this paper’s transparent peer review process is included in the Supplemental Information. |
format | Online Article Text |
id | pubmed-8247631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-82476312021-07-01 nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer Hollandi, Reka Szkalisity, Abel Toth, Timea Tasnadi, Ervin Molnar, Csaba Mathe, Botond Grexa, Istvan Molnar, Jozsef Balind, Arpad Gorbe, Mate Kovacs, Maria Migh, Ede Goodman, Allen Balassa, Tamas Koos, Krisztian Wang, Wenyu Caicedo, Juan Carlos Bara, Norbert Kovacs, Ferenc Paavolainen, Lassi Danka, Tivadar Kriston, Andras Carpenter, Anne Elizabeth Smith, Kevin Horvath, Peter Cell Syst Article Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods submitted to the 2018 Data Science Bowl on images representing a variety of realistic conditions, some of which were not represented in the training data. The key to our approach is that during training nucleAIzer automatically adapts its nucleus-style model to unseen and unlabeled data using image style transfer to automatically generate augmented training samples. This allows the model to recognize nuclei in new and different experiments efficiently without requiring expert annotations, making deep learning for nucleus segmentation fairly simple and labor free for most biological light microscopy experiments. It can also be used online, integrated into CellProfiler and freely downloaded at www.nucleaizer.org. A record of this paper’s transparent peer review process is included in the Supplemental Information. 2020-05-07 2020-05-20 /pmc/articles/PMC8247631/ /pubmed/34222682 http://dx.doi.org/10.1016/j.cels.2020.04.003 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Hollandi, Reka Szkalisity, Abel Toth, Timea Tasnadi, Ervin Molnar, Csaba Mathe, Botond Grexa, Istvan Molnar, Jozsef Balind, Arpad Gorbe, Mate Kovacs, Maria Migh, Ede Goodman, Allen Balassa, Tamas Koos, Krisztian Wang, Wenyu Caicedo, Juan Carlos Bara, Norbert Kovacs, Ferenc Paavolainen, Lassi Danka, Tivadar Kriston, Andras Carpenter, Anne Elizabeth Smith, Kevin Horvath, Peter nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer |
title | nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer |
title_full | nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer |
title_fullStr | nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer |
title_full_unstemmed | nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer |
title_short | nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer |
title_sort | nucleaizer: a parameter-free deep learning framework for nucleus segmentation using image style transfer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247631/ https://www.ncbi.nlm.nih.gov/pubmed/34222682 http://dx.doi.org/10.1016/j.cels.2020.04.003 |
work_keys_str_mv | AT hollandireka nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT szkalisityabel nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT tothtimea nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT tasnadiervin nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT molnarcsaba nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT mathebotond nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT grexaistvan nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT molnarjozsef nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT balindarpad nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT gorbemate nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT kovacsmaria nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT mighede nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT goodmanallen nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT balassatamas nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT kooskrisztian nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT wangwenyu nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT caicedojuancarlos nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT baranorbert nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT kovacsferenc nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT paavolainenlassi nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT dankativadar nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT kristonandras nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT carpenteranneelizabeth nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT smithkevin nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer AT horvathpeter nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer |