Cargando…

nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer

Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods su...

Descripción completa

Detalles Bibliográficos
Autores principales: Hollandi, Reka, Szkalisity, Abel, Toth, Timea, Tasnadi, Ervin, Molnar, Csaba, Mathe, Botond, Grexa, Istvan, Molnar, Jozsef, Balind, Arpad, Gorbe, Mate, Kovacs, Maria, Migh, Ede, Goodman, Allen, Balassa, Tamas, Koos, Krisztian, Wang, Wenyu, Caicedo, Juan Carlos, Bara, Norbert, Kovacs, Ferenc, Paavolainen, Lassi, Danka, Tivadar, Kriston, Andras, Carpenter, Anne Elizabeth, Smith, Kevin, Horvath, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247631/
https://www.ncbi.nlm.nih.gov/pubmed/34222682
http://dx.doi.org/10.1016/j.cels.2020.04.003
_version_ 1783716556813893632
author Hollandi, Reka
Szkalisity, Abel
Toth, Timea
Tasnadi, Ervin
Molnar, Csaba
Mathe, Botond
Grexa, Istvan
Molnar, Jozsef
Balind, Arpad
Gorbe, Mate
Kovacs, Maria
Migh, Ede
Goodman, Allen
Balassa, Tamas
Koos, Krisztian
Wang, Wenyu
Caicedo, Juan Carlos
Bara, Norbert
Kovacs, Ferenc
Paavolainen, Lassi
Danka, Tivadar
Kriston, Andras
Carpenter, Anne Elizabeth
Smith, Kevin
Horvath, Peter
author_facet Hollandi, Reka
Szkalisity, Abel
Toth, Timea
Tasnadi, Ervin
Molnar, Csaba
Mathe, Botond
Grexa, Istvan
Molnar, Jozsef
Balind, Arpad
Gorbe, Mate
Kovacs, Maria
Migh, Ede
Goodman, Allen
Balassa, Tamas
Koos, Krisztian
Wang, Wenyu
Caicedo, Juan Carlos
Bara, Norbert
Kovacs, Ferenc
Paavolainen, Lassi
Danka, Tivadar
Kriston, Andras
Carpenter, Anne Elizabeth
Smith, Kevin
Horvath, Peter
author_sort Hollandi, Reka
collection PubMed
description Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods submitted to the 2018 Data Science Bowl on images representing a variety of realistic conditions, some of which were not represented in the training data. The key to our approach is that during training nucleAIzer automatically adapts its nucleus-style model to unseen and unlabeled data using image style transfer to automatically generate augmented training samples. This allows the model to recognize nuclei in new and different experiments efficiently without requiring expert annotations, making deep learning for nucleus segmentation fairly simple and labor free for most biological light microscopy experiments. It can also be used online, integrated into CellProfiler and freely downloaded at www.nucleaizer.org. A record of this paper’s transparent peer review process is included in the Supplemental Information.
format Online
Article
Text
id pubmed-8247631
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-82476312021-07-01 nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer Hollandi, Reka Szkalisity, Abel Toth, Timea Tasnadi, Ervin Molnar, Csaba Mathe, Botond Grexa, Istvan Molnar, Jozsef Balind, Arpad Gorbe, Mate Kovacs, Maria Migh, Ede Goodman, Allen Balassa, Tamas Koos, Krisztian Wang, Wenyu Caicedo, Juan Carlos Bara, Norbert Kovacs, Ferenc Paavolainen, Lassi Danka, Tivadar Kriston, Andras Carpenter, Anne Elizabeth Smith, Kevin Horvath, Peter Cell Syst Article Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods submitted to the 2018 Data Science Bowl on images representing a variety of realistic conditions, some of which were not represented in the training data. The key to our approach is that during training nucleAIzer automatically adapts its nucleus-style model to unseen and unlabeled data using image style transfer to automatically generate augmented training samples. This allows the model to recognize nuclei in new and different experiments efficiently without requiring expert annotations, making deep learning for nucleus segmentation fairly simple and labor free for most biological light microscopy experiments. It can also be used online, integrated into CellProfiler and freely downloaded at www.nucleaizer.org. A record of this paper’s transparent peer review process is included in the Supplemental Information. 2020-05-07 2020-05-20 /pmc/articles/PMC8247631/ /pubmed/34222682 http://dx.doi.org/10.1016/j.cels.2020.04.003 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Hollandi, Reka
Szkalisity, Abel
Toth, Timea
Tasnadi, Ervin
Molnar, Csaba
Mathe, Botond
Grexa, Istvan
Molnar, Jozsef
Balind, Arpad
Gorbe, Mate
Kovacs, Maria
Migh, Ede
Goodman, Allen
Balassa, Tamas
Koos, Krisztian
Wang, Wenyu
Caicedo, Juan Carlos
Bara, Norbert
Kovacs, Ferenc
Paavolainen, Lassi
Danka, Tivadar
Kriston, Andras
Carpenter, Anne Elizabeth
Smith, Kevin
Horvath, Peter
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
title nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
title_full nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
title_fullStr nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
title_full_unstemmed nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
title_short nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
title_sort nucleaizer: a parameter-free deep learning framework for nucleus segmentation using image style transfer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247631/
https://www.ncbi.nlm.nih.gov/pubmed/34222682
http://dx.doi.org/10.1016/j.cels.2020.04.003
work_keys_str_mv AT hollandireka nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT szkalisityabel nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT tothtimea nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT tasnadiervin nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT molnarcsaba nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT mathebotond nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT grexaistvan nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT molnarjozsef nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT balindarpad nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT gorbemate nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT kovacsmaria nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT mighede nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT goodmanallen nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT balassatamas nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT kooskrisztian nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT wangwenyu nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT caicedojuancarlos nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT baranorbert nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT kovacsferenc nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT paavolainenlassi nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT dankativadar nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT kristonandras nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT carpenteranneelizabeth nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT smithkevin nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer
AT horvathpeter nucleaizeraparameterfreedeeplearningframeworkfornucleussegmentationusingimagestyletransfer